Grafts, substitutes and biological mediators for periodontal regeneration in intrabony defects: an updated review
DOI:
https://doi.org/10.29166/odontologia.vol26.n2.2024-e6749Keywords:
periodontal regeneration, biocompatible materials, intrabony defectsAbstract
Objective. The objective of this narrative review is to synthesize the available evidence to provide the clinician with an updated review of biomaterials, bone grafts or substitutes, biological mediators, and other therapies used for periodontal regeneration of intrabony defects. Methodology. A search was carried out in the PubMed (Medline), PubMed, Elsevier and Google Scholar databases to extract the corresponding data. This review has analyzed and updated studies on periodontal regeneration materials. Results. The results of the present review indicate that periodontal regeneration in human intrabony defects can be achieved to a variable degree using a variety of methods and materials. Periodontal regeneration has been observed after the use of a variety of bone grafts and substitutes, guided tissue regeneration, enamel matrix derivatives that have been used and studied for some time, as well as materials that are currently emerging, such as biological mediators. Conclusion. Regenerating the insertion and support apparatus of the teeth is necessary since it allows changing or improving the prognosis after the destruction caused by periodontitis. Currently there is no biomaterial, biological mediator, graft or bone substitute that can be considered the gold standard because the use of these is only one of the factors to obtain periodontal regeneration of intrabony defects, other determinants such as the condition Systemic variables, behavioral variables, the oral environment, flap design-management techniques, and the experience and training of the surgeon also have a direct effect on the result.
Downloads
References
Sanz M, Herrera D, Kebschull M, Chapple I, Jepsen S, Berglundh T, et al. Treatment of stage I–III periodontitis—The EFP S3 level clinical practice guideline. J Clin Periodontol [Internet]. 2020 [citado el 7 de enero de 2024];47(S22):4–60. Disponible en: http://dx.doi.org/10.1111/jcpe.13290
Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res [Internet]. 2015 [citado el 7 de enero de 2024];2015:1–10. Disponible en: http://dx.doi.org/10.1155/2015/615486
The American academy of periodontology 2001 annual report. J Periodontol [Internet]. 2001;72(12):1801–15. Disponible en: http://dx.doi.org/10.1902/jop.2001.72.12.1801
Glossary of periodontal terms [Internet]. Perio.org. [citado el 7 de enero de 2024]. Disponible en: https://members.perio.org/libraries/glossary?_ga=2.102499073.1841670099.1563851830-728767205.1563851830&ssopc=1
Matuliene G, Pjetursson BE, Salvi GE, Schmidlin K, Brägger U, Zwahlen M, et al. Influence of residual pockets on progression of periodontitis and tooth loss: Results after 11 years of maintenance. J Clin Periodontol [Internet]. 2008;35(8):685–95. Disponible en: http://dx.doi.org/10.1111/j.1600-051x.2008.01245.x
Reynolds MA, Kao RT, Nares S, Camargo PM, Caton JG, Clem DS, et al. Periodontal regeneration — intrabony defects: Practical applications from the AAP regeneration workshop. Clinic Adv Periodontics [Internet]. 2015;5(1):21–9. Disponible en: http://dx.doi.org/10.1902/cap.2015.140062
Pepelassi E, Deligianni M. The adjunctive use of leucocyte- and platelet-rich fibrin in periodontal endosseous and furcation defects: A systematic review and meta-analysis. Materials (Basel) [Internet]. 2022 [citado el 7 de enero de 2024];15(6):2088. Disponible en: https://www.mdpi.com/1996-1944/15/6/2088
Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple ILC, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000 [Internet]. 2015 [citado el 7 de enero de 2024];68(1):182–216. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25867987/
Lee I-K, Choi H-S, Jeong S-H, Lee J-T. Evaluating change of marginal bone height with cone-beam computed tomography following surgical treatment with guided tissue regeneration (bone grafting) or access flap alone: A retrospective study. Medicina (Kaunas) [Internet]. 2021 [citado el 7 de enero de 2024];57(9):869. Disponible en: https://www.mdpi.com/1648-9144/57/9/869
Temraz A, Ghallab NA, Hamdy R, El-Dahab OA. Clinical and radiographic evaluation of amnion chorion membrane and demineralized bone matrix putty allograft for management of periodontal intrabony defects: a randomized clinical trial. Cell Tissue Bank [Internet]. 2019;20(1):117–28. Disponible en: http://dx.doi.org/10.1007/s10561-018-09743-6
Agrawal E, Chopra R, Gupta S, Sharma N, Khan F, Gupta N. Comparative evaluation of the efficacy of amniotic membrane with collagen membrane along with demineralized freeze-dried bone allograft in the treatment of periodontal intrabony defects – A clinico-radiographic study. J Indian Soc Periodontol [Internet]. 2022 [citado el 7 de enero de 2024];26(5):458. Disponible en: http://dx.doi.org/10.4103/jisp.jisp_305_21
Brodzikowska A, Górski B, Szerszeń M, Sanz M. Efficacy of guided tissue regeneration using frozen radiation-sterilized allogenic bone graft as bone replacement graft compared with deproteinized bovine bone mineral in the treatment of periodontal intra-bony defects: Randomized controlled trial. J Clin Med [Internet]. 2023 [citado el 7 de enero de 2024];12(4):1396. Disponible en: https://www.mdpi.com/2077-0383/12/4/1396
Priyanka M, . Reddy K, Pradeep K. Efficacy of rh‑PDGF‑BB and emdogain with or without DFDBA using M-MIST in the treatment of intrabony defects. Niger J Clin Pract [Internet]. 2023 [citado el 7 de enero de 2024];26(1):116–24. Disponible en: https://www.ajol.info/index.php/njcp/article/view/246201
Sargolzaie N, Kadkhodazadeh M, Ebadian AR, Shafieian R, Pourkaveh S, Naghibi N, et al. Histological evaluation of bone regeneration using hydroxyapatite based bone substitute derived from antler: An animal study. J Long Term Eff Med Implants [Internet]. 2022 [citado el 8 de enero de 2024];32(1):77–84. Disponible en: https://www.dl.begellhouse.com/journals/1bef42082d7a0fdf,1adfe1497e005c13,715bf3ed27015d8d.html
Górski B, Jalowski S, Górska R, Zaremba M. Treatment of intrabony defects with modified perforated membranes in aggressive periodontitis: a 4-year follow-up of a randomized controlled trial. Clin Oral Investig [Internet]. 2020;24(3):1183–96. Disponible en: http://dx.doi.org/10.1007/s00784-019-02982-1
Thakkar B, Chandran S, Vishnoi S, Nadig P, Raval R, Doshi P. Comparison of regenerative potential of platelet-rich fibrin alone and in combination with bovine bone graft in intraosseous defect by single flap approach: A clinical and radiographic study. J Int Soc Prev Community Dent [Internet]. 2020 [citado el 8 de enero de 2024];10(6):743. Disponible en: http://dx.doi.org/10.4103/jispcd.jispcd_200_19
Gorkhali RS, Pradhan S, Shrestha R, Agrawal S, Lamicchane K, Koirala PK, et al. Evaluation of bovine derived xenograft combined with bioresorbable collagen membrane in treatment of intrabony defects. J Nepal Soc Perio Oral Implantology [Internet]. 2020 [citado el 8 de enero de 2024];4(2):61–7. Disponible en: https://www.semanticscholar.org/paper/313216d136e0e4dccaeed7ea183b7d391a312bcb
Lee J-H, Jeong S-N. Long‐term stability of adjunctive use of enamel matrix protein derivative on porcine‐derived xenograft for the treatment of one‐wall intrabony defects: A 4‐year extended follow‐up of a randomized controlled trial. J Periodontol [Internet]. 2022 [citado el 8 de enero de 2024];93(2):231–8. Disponible en: http://dx.doi.org/10.1002/jper.21-0254
Górski B, Jalowski S, Górska R, Zaremba M. Treatment of intrabony defects with modified perforated membranes in aggressive periodontitis: subtraction radiography outcomes, prognostic variables, and patient morbidity. Clin Oral Investig [Internet]. 2019 [citado el 8 de enero de 2024];23(7):3005–20. Disponible en: http://dx.doi.org/10.1007/s00784-018-2712-7
Deshpande A, Baburaj M, Tambe L, Prasad U. Extracellular matrix containing nanocomposite bone graft in periodontal regeneration – A randomized controlled clinical and radiographic evaluation. J Indian Soc Periodontol [Internet]. 2021 [citado el 8 de enero de 2024];25(4):313. Disponible en: http://dx.doi.org/10.4103/jisp.jisp_440_20
Elbattawy W, Ahmed D. Clinical and radiographic evaluation of open flap debridement with or without Nanocrystalline Hydroxyapatite bone graft in management of periodontal intrabony defects. Egypt Dent J [Internet]. 2021 [citado el 8 de enero de 2024];67(1):433–46. Disponible en: https://journals.ekb.eg/article_142377.html
Puvvalla B, Koduru S, Aghanashini S, Nadiger S, Apoorva SM, Bhat D. A clinical and radiographic evaluation of the efficacy of nanohydroxyapatite (SybografTM) versus bioactive calcium phosphosilicate putty (Novabone®) in the treatment of human periodontal infrabony defects: A randomized clinical trial. Contemp Clin Dent [Internet]. 2019 [citado el 8 de enero de 2024];10(1):16. Disponible en: http://dx.doi.org/10.4103/ccd.ccd_52_18
Verardi S, Lombardi T, Stacchi C. Clinical and radiographic evaluation of nanohydroxyapatite powder in combination with polylactic acid/polyglycolic acid copolymer as bone replacement graft in the surgical treatment of intrabony periodontal defects: A retrospective case series study. Materials (Basel) [Internet]. 2020 [citado el 8 de enero de 2024];13(2):269. Disponible en: http://dx.doi.org/10.3390/ma13020269
Yousef D, Al Hessy A, Saeed AAA, El Shamy E. Nanohydroxyapatite versus melatonin loaded on nanohydroxyapatite and nanohydroxyapatite with platelet rich fibrin on the treatment of intrabony defects. Tanta Dent J [Internet]. 2018 [citado el 8 de enero de 2024];15(3):148. Disponible en: https://journals.lww.com/TDOJ/Fulltext/2018/15030/Nanohydroxyapatite_versus_melatonin_loaded_on.4.aspx
Vinaya KC, Awinashe V, Patil DB, Babaji P, Mahabob N, Shetty BK, et al. Intrabony defect management with a bone graft (hydroxyapatite and β-tricalcium phosphate) alone and in combination with a diode laser: A randomized control trial. Tzu Chi Med J [Internet]. 2023 [citado el 8 de enero de 2024];35(4):338–42. Disponible en: http://dx.doi.org/10.4103/tcmj.tcmj_316_22
Chakraborthy P, Ravishankar PL, Saravanan AV, Alzahrani KJ, Halawan IF, Alshammeri S, et al. Effect of AmnioGuard and BioMesh GTR membranes with NovaBone putty in the treatment of periodontal osseous defects—A communication. Int J Environ Res Public Health [Internet]. 2023 [citado el 8 de enero de 2024];20(1):816. Disponible en: http://dx.doi.org/10.3390/ijerph20010816
Ohsugi Y, Niimi H, Shimohira T, Hatasa M, Katagiri S, Aoki A, et al. In vitro cytological responses against laser photobiomodulation for periodontal regeneration. Int J Mol Sci [Internet]. 2020 [citado el 8 de enero de 2024];21(23):9002. Disponible en: http://dx.doi.org/10.3390/ijms21239002
Tan K-S. Erbium-doped yttrium aluminum garnet laser and advanced platelet-rich fibrin+ in periodontal diseases: Two case reports and review of the literature. World J Clin Cases [Internet]. 2022 [citado el 8 de enero de 2024];10(33):12337–44. Disponible en: http://dx.doi.org/10.12998/wjcc.v10.i33.12337
Laky M, Müller M, Laky B, Arslan M, Wehner C, Husejnagic S, et al. Short-term results of the combined application of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and erbium-doped yttrium aluminum garnet (Er:YAG) laser in the treatment of periodontal disease: a randomized controlled trial. Clin Oral Investig [Internet]. 2021 [citado el 8 de enero de 2024];25(11):6119–26. Disponible en: http://dx.doi.org/10.1007/s00784-021-03911-x
Gamil M, El-Destawy M, Fekry M. A comparative study of the effect of demineralized bone matrix with and without low level laser therapy on the treatment of periodontal infra-bony defects (randomized clinical trial). Al-Azhar Assiut Dental Journal [Internet]. 2019 [citado el 8 de enero de 2024];2(1):67–75. Disponible en: https://journals.ekb.eg/article_60188.html
Silviya S, Anitha, Prakash PSG, Bahammam SA, Bahammam MA, Almarghlani A, et al. The efficacy of Low-level laser therapy combined with single flap periodontal surgery in the management of intrabony periodontal defects: A randomized controlled trial. Healthcare (Basel) [Internet]. 2022 [citado el 8 de enero de 2024];10(7):1301. Disponible en: https://www.mdpi.com/2227-9032/10/7/1301
Clem D, Heard R, McGuire M, Scheyer ET, Richardson C, Toback G, et al. A comparison of Er,Cr:YSGG laser to minimally invasive surgical technique in the treatment of intrabony defects: Twelve‐month results of a multicenter, randomized, controlled study. J Periodontol [Internet]. 2023; Disponible en: http://dx.doi.org/10.1002/jper.23-0286
Fan L, Wu D. Enamel matrix derivatives for periodontal regeneration: Recent developments and future perspectives. J Healthc Eng [Internet]. 2022 [citado el 8 de enero de 2024];2022:1–10. Disponible en: http://dx.doi.org/10.1155/2022/8661690
Dikilitaş A, Taşpınar M, İnanç B. Evaluation of the effects of enamel matrix protein derivatives on clinical attachment gain in periodontal defects and on proliferation and differentiation of periodontal ligament fibroblasts in vitro: A double-blind study. Meandros Med Dent J [Internet]. 2022 [citado el 8 de enero de 2024];23(2):200–7. Disponible en: https://acikerisim.aksaray.edu.tr/xmlui/handle/20.500.12451/9609
Windisch P, Iorio-Siciliano V, Palkovics D, Ramaglia L, Blasi A, Sculean A. The role of surgical flap design (minimally invasive flap vs. extended flap with papilla preservation) on the healing of intrabony defects treated with an enamel matrix derivative: a 12-month two-center randomized controlled clinical trial. Clin Oral Investig [Internet]. 2022 [citado el 8 de enero de 2024];26(2):1811–21. Disponible en: http://dx.doi.org/10.1007/s00784-021-04155-5
Corbella S, Alberti A, Calciolari E, Taschieri S, Francetti L. Enamel matrix derivative for the treatment of partially contained intrabony defects: 12‐month results. Aust Dent J [Internet]. 2019;64(1):27–34. Disponible en: http://dx.doi.org/10.1111/adj.12654
De Ry SP, Roccuzzo A, Lang NP, Sculean A, Salvi GE. Long‐term clinical outcomes of periodontal regeneration with enamel matrix derivative: A retrospective cohort study with a mean follow‐up of 10 years. J Periodontol [Internet]. 2022 [citado el 8 de enero de 2024];93(4):548–59. Disponible en: http://dx.doi.org/10.1002/jper.21-0347
Fileto Mazzonetto AL, Casarin RCV, Santamaria MP, Andere NMRB, Araújo CF, Videira Clima da Silva R, et al. Clinical, radiographic, and patient‐centered outcomes after use of enamel matrix proteins for the treatment of intrabony defects in patients with aggressive periodontitis: A 12‐month multicenter clinical trial. J Periodontol [Internet]. 2021;92(7):995–1006. Disponible en: http://dx.doi.org/10.1002/jper.20-0493
Iorio-Siciliano V, Blasi A, Stratul S-I, Ramaglia L, Octavia V, Salvi GE, et al. Healing of periodontal suprabony defects following treatment with open flap debridement with or without an enamel matrix derivative: A randomized controlled clinical study. Clin Oral Investig [Internet]. 2021;25(3):1019–27. Disponible en: http://dx.doi.org/10.1007/s00784-020-03392-4
Artzi Z, Sudri S, Platner O, Kozlovsky A. Regeneration of the periodontal apparatus in aggressive periodontitis patients. Dent J [Internet]. 2019 [citado el 8 de enero de 2024];7(1):29. Disponible en: http://dx.doi.org/10.3390/dj7010029
Csifó-Nagy BK, Sólyom E, Bognár VL, Nevelits A, Dőri F. Efficacy of a new-generation platelet-rich fibrin in the treatment of periodontal intrabony defects: a randomized clinical trial. BMC Oral Health [Internet]. 2021 [citado el 8 de enero de 2024];21(1). Disponible en: http://dx.doi.org/10.1186/s12903-021-01925-1
Padrón-Molina OJ, Parise-Vasco JM, Zambrano-Achig PE, Montesinos-Guevara C. Effectiveness of the use of platelet-rich fibrin associated with open flap debridement compared to open flap debridement alone for the treatment of periodontal intrabony defects: Overview of systematic reviews. J Indian Soc Periodontol [Internet]. 2023 [citado el 8 de enero de 2024];27(3):262–72. Disponible en: http://dx.doi.org/10.4103/jisp.jisp_300_22
Reddy S, Mgs P, Bhowmik N, Priya S, Manasa D, Lecturer S, et al. Open flap debridement using microsurgical loupes and modified widman flap approach -A case series [Internet]. Oraljournal.com. [citado el 8 de enero de 2024]. Disponible en: https://www.oraljournal.com/pdf/2019/vol5issue2/PartB/5-2-15-544.pdf
Petsos H, Ratka-Krüger P, Neukranz E, Raetzke P, Eickholz P, Nickles K. Infrabony defects 20 years after open flap debridement and guided tissue regeneration. J Clin Periodontol [Internet]. 2019;46(5):552–63. Disponible en: http://dx.doi.org/10.1111/jcpe.13110
Mijiritsky E, Assaf HD, Peleg O, Shacham M, Cerroni L, Mangani L. Use of PRP, PRF and CGF in periodontal regeneration and facial rejuvenation—A narrative review. Biology (Basel) [Internet]. 2021 [citado el 8 de enero de 2024];10(4):317. Disponible en: http://dx.doi.org/10.3390/biology10040317
Kudyar N, Dani N, Abullais SS, AlQahtani NA, Gupta A, Attar N. The effects of autologous platelet concentrate on the healing of intra-bony defects: a randomized clinical trial. Eur Oral Res [Internet]. 2019 [citado el 8 de enero de 2024];53(1):38. Disponible en: http://dx.doi.org/10.26650/eor.20192207101715
Del Fabbro M, Karanxha L, Panda S, Bucchi C, Nadathur Doraiswamy J, Sankari M, et al. Autologous platelet concentrates for treating periodontal infrabony defects. Cochrane Libr [Internet]. 2018 [citado el 8 de enero de 2024];2018(11). Disponible en: http://dx.doi.org/10.1002/14651858.cd011423.pub2
Deng Y, Liang Y, Liu X. Biomaterials for periodontal regeneration. Dent Clin North Am [Internet]. 2022 [citado el 8 de enero de 2024];66(4):659–72. Disponible en: http://dx.doi.org/10.1016/j.cden.2022.05.011
Majzoub J, Barootchi S, Tavelli L, Wang C-W, Chan H-L, Wang H-L. Guided tissue regeneration combined with bone allograft in infrabony defects: Clinical outcomes and assessment of prognostic factors. J Periodontol [Internet]. 2020;91(6):746–55. Disponible en: http://dx.doi.org/10.1002/jper.19-0336
Venkatesan N, Lavu V, Balaji SK. Clinical efficacy of amniotic membrane with biphasic calcium phosphate in guided tissue regeneration of intrabony defects- a randomized controlled clinical trial. Biomater Res [Internet]. 2021 [citado el 8 de enero de 2024];25(1). Disponible en: http://dx.doi.org/10.1186/s40824-021-00217-7
Mohan S, Jaishangar N, Devy S, Narayanan A, Cherian D, Madhavan S. Platelet-rich plasma and platelet-rich fibrin in periodontal regeneration: A review. J Pharm Bioallied Sci [Internet]. 2019 [citado el 8 de enero de 2024];11(6):126. Disponible en: http://dx.doi.org/10.4103/jpbs.jpbs_41_19
Farshidfar N, Jafarpour D, Firoozi P, Sahmeddini S, Hamedani S, de Souza RF, et al. The application of injectable platelet-rich fibrin in regenerative dentistry: A systematic scoping review of In vitro and In vivo studies. Jpn Dent Sci Rev [Internet]. 2022 [citado el 8 de enero de 2024];58:89–123. Disponible en: http://dx.doi.org/10.1016/j.jdsr.2022.02.003
Mubarak R, Adel-Khattab D, Abdel-Ghaffar KA, Gamal AY. Adjunctive effect of collagen membrane coverage to L-PRF in the treatment of periodontal intrabony defects: a randomized controlled clinical trial with biochemical assessment. BMC Oral Health [Internet]. 2023 [citado el 8 de enero de 2024];23(1). Disponible en: http://dx.doi.org/10.1186/s12903-023-03332-0
Abdulrahman YA, Hosny MM, Elfana A, Fawzy El-Sayed KM. Clinical and radiographic evaluation of low-speed platelet-rich fibrin (PRF) for the treatment of intra-osseous defects of stage-III periodontitis patients: a randomized controlled clinical trial. Clin Oral Investig [Internet]. 2022 [citado el 8 de enero de 2024];26(11):6671–80. Disponible en: http://dx.doi.org/10.1007/s00784-022-04627-2
Tavelli L, McGuire MK, Zucchelli G, Rasperini G, Feinberg SE, Wang H-L, et al. Biologics‐based regenerative technologies for periodontal soft tissue engineering. J Periodontol [Internet]. 2020;91(2):147–54. Disponible en: http://dx.doi.org/10.1002/jper.19-0352
Joshi AA, Padhye AM, Gupta HS. Platelet derived growth factor‐BB levels in gingival crevicular fluid of localized intrabony defect sites treated with platelet rich fibrin membrane or collagen membrane containing recombinant human platelet derived growth factor‐BB: A randomized clinical and biochemical study. J Periodontol [Internet]. 2019;90(7):701–8. Disponible en: http://dx.doi.org/10.1002/jper.18-0496
Dubba Kavyamala, MDS/N. V. S. Sruthima G, MDS/C. D. Dwarakanath, MDS/M. Anudeep, MDS. Evaluation of the efficacy of a 1:1 mixture of β-TCP and rhPDGF-BB in the surgical management of two- and three-wall intraosseous defects: A prospective clinical trial [Internet]. Quintpub.com. [citado el 8 de enero de 2024]. Disponible en: https://quintpub.com/journals/prd/abstract.php?iss2_id=1574&article_id=18998
Nuñez J, Vignoletti F, Caffesse RG, Sanz M. Cellular therapy in periodontal regeneration. Periodontol 2000 [Internet]. 2019 [citado el 8 de enero de 2024];79(1):107–16. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30892768/
Raju R, Oshima M, Inoue M, Morita T, Huijiao Y, Waskitho A, et al. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci Rep [Internet]. 2020 [citado el 8 de enero de 2024];10(1). Disponible en: http://dx.doi.org/10.1038/s41598-020-58222-0
Chen F-M, Gao L-N, Tian B-M, Zhang X-Y, Zhang Y-J, Dong G-Y, et al. Correction to: Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther [Internet]. 2018 [citado el 8 de enero de 2024];9(1). Disponible en: http://dx.doi.org/10.1186/s13287-018-1000-4
Iwata T, Yamato M, Washio K, Yoshida T, Tsumanuma Y, Yamada A, et al. Periodontal regeneration with autologous periodontal ligament-derived cell sheets – A safety and efficacy study in ten patients. Regen Ther [Internet]. 2018 [citado el 8 de enero de 2024];9:38–44. Disponible en: http://dx.doi.org/10.1016/j.reth.2018.07.002
Ferrarotti F, Romano F, Gamba MN, Quirico A, Giraudi M, Audagna M, et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J Clin Periodontol [Internet]. 2018;45(7):841–50. Disponible en: http://dx.doi.org/10.1111/jcpe.12931
Aimetti M, Ferrarotti F, Gamba M, Giraudi M, Romano F. Regenerative treatment of periodontal intrabony defects using autologous dental pulp stem cells: A 1-year follow-up case series. Int J Periodontics Restorative Dent [Internet]. 2018 [citado el 8 de enero de 2024];38(1):51–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29240205/
Sánchez N, Fierravanti L, Núñez J, Vignoletti F, González-Zamora M, Santamaría S, et al. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament‐derived mesenchymal stem cells: A 12‐month quasi‐randomized controlled pilot clinical trial. J Clin Periodontol [Internet]. 2020;47(11):1391–402. Disponible en: http://dx.doi.org/10.1111/jcpe.13368
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mauricio Ismael Cordero Beltran, Johnny Renato Pineda Paredes, Cristina Paola Carpio Cedillo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.