Observaciones ecofisiológicas sobre las temperaturas de cuerpo de los anuros Dendropsophus bifurcus, Rhinella marina y Scinax ruber de la Cuenca Amazónica Alta en el noreste de Ecuador

Contenido principal del artículo

Marco A. Altamirano-Benavides
Guillermo A. Woolrich-Piña

Resumen

Los ectotermos que habitan los bosques tropicales están sujetos a temperaturas ambientales constantes, lo cual determina que sus estrategias termoregulatorias sean pasivas. Estas tendencias termoregulatorias fueron observadas durante el verano del 2017 en los anuros Dendropsophus bifurcus, Rhinella marina y Scinax ruber, en un bosque tropical de la cuenca amazónica alta del Ecuador. Una tendencia a la tigmotermia se presentó en D. bifurcus y S. ruber, mientras que R. marina presentó tendencia hacia la heliotermia. Las temperaturas de cuerpo (Tbs) no difirieron entre D. bifurcus y R. marina, pero S. ruber mostró una baja Tb. Nuestros resultados sugieren que el ambiente termal influencia las diferentes estrategias termoregulatorias como la tigmotermia y la heliotermia en ranas y sapos distribuidos en ambientes tropicales de baja elevación.

Descargas

Métricas

Visualizaciones del PDF
280
Sep 07 '23Sep 10 '23Sep 13 '23Sep 16 '23Sep 19 '23Sep 22 '23Sep 25 '23Sep 28 '23Oct 01 '23Oct 04 '2311
|
Visualizaciones del HTML
14
Jan 2024Jul 2024Jan 2025Jul 2025Jan 20264.0
Visualizaciones de otros formatos
16
Jan 2024Jul 2024Jan 2025Jul 2025Jan 20264.0

Detalles del artículo

Cómo citar
Altamirano-Benavides, M. A., & Woolrich-Piña, G. A. (2023). Observaciones ecofisiológicas sobre las temperaturas de cuerpo de los anuros Dendropsophus bifurcus, Rhinella marina y Scinax ruber de la Cuenca Amazónica Alta en el noreste de Ecuador. Siembra, 10(2), e4479. https://doi.org/10.29166/siembra.v10i2.4479
Sección
Artículo original
Biografía del autor/a

Marco A. Altamirano-Benavides, Universidad Central del Ecuador, Facultad de Ciencias Agrícolas. Jerónimo Leiton y Gatto Sobral S/N. Ciudadela Universitaria. C. P. 170521. Quito, Pichincha, Ecuador / Universidad Iberoamericana del Ecuador. Dirección de Investigación. Av. 9 de Octubre N25-12 y Colón. Quito, Ecuador

https://orcid.org/0000-0002-3082-8103

Guillermo A. Woolrich-Piña, Tecnológico Nacional de México, Campus Zacapoaxtla. División de Biología, Subdirección de Investigación y Posgrado, Laboratorio de Zoología y Ecofisiología. Carretera Acuaco-Zacapoaxtla km. 8, Col. Totoltepec, Zacapoaxtla. C. P. 73680. Puebla, México.

https://orcid.org/0000-0002-3421-7246

Citas

Acevedo, A. A., Lampo, M., & Cipriani, R. (2016). The cane or marine toad, Rhinella marina (Anura, Bufonidae): two genetically and morphologically distinct species. Zootaxa, 4103(6), 574-586. http://doi.org/10.11646/zootaxa.4103.6.7

Adolph, S. C., & Porter, W. P. (1993). Temperature, activity, and lizard life histories. The American Naturalist, 142(2), 273-295. https://doi.org/10.1086/285538

Almendáriz, A. (1987). Contribución al conocimiento de la herpetofauna centroriental Ecuatoriana. Politécnica, 12(4), 77-133. http://bibdigital.epn.edu.ec/handle/15000/4778

Alveal Riquelme, N. F. (2015). Relaciones entre la fisiología térmica y las características bioclimáticas de Rhinella spinulosa (Anura: Bufonidae) en Chile a través del enlace mecanicista de nicho térmico. Universidad de Concepción. http://repositorio.udec.cl/jspui/handle/11594/1797

Andrews, R. M. (1998). Geographic variation in field body temperature of Sceloporus lizards. Journal of Thermal Biology, 23(6), 329-334. https://doi.org/10.1016/S0306-4565(98)00018-7

Ayers, D. Y., & Shine, R. (1997). Thermal influences on foraging ability: body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Functional Ecology, 11(3), 342-347. https://doi.org/10.1046/j.1365-2435.1997.00093.x

Belliure, J., & Carrascal, L. M. (2002). Influence of heat transmission mode on heating rates and on the selection of patches for heating in a mediterranean lizard. Physiological and Biochemical Zoology, 75(4), 369-376. https://doi.org/10.1086/342768

Brattstrom, B. H. (1963). A Preliminary Review of the Thermal Requirements of Amphibians. Ecology, 44(2), 238-255. https://doi.org/10.2307/1932171

Cerón Martínez, C. E., Reyes, C. I., Montalvo Ayala, C., & Vargas Grefa, L. M. (2007). La cuenca alta del río Oglán, Pastaza-Ecuador, diversidad, ecología y flora. Editorial Universitaria.

Duellman, W. E. (1978). The biology of an equatorial herpetofauna in Amazonian Ecuador. University of Kansas.

Duellman, W. E., & Mendelson, J. R. III. (1995). Amphibians and reptiles from northern Departamento Loreto, Perú: Taxonomy and biogeography. The University of Kansas Science Bulletin, 55, 329-376. https://doi.org/10.5962/bhl.part.779

Fouquet, A., Vences, M., Salducci, M. D., Meyer, A., Marty, C., Blanc, M., & Gilles, A. (2007). Revealing cryptic diversity using molecular phylogenetics and phylogeography in frogs of the Scinax ruber and Rhinella margaritifera species groups. Molecular Phylogenetics and Evolution, 43(2), 567-582. https://doi.org/10.1016/j.ympev.2006.12.006

Frost, D. R. (2023). Amphibian Species of the World: an Online Reference. Version 6.2. American Museum of Natural History. https://doi.org/10.5531/db.vz.0001

Garrick, D. (2008). Body surface temperature and length in relation to the thermal biology of lizards. Bioscience Horizons: The International Journal of Student Research, 1(2), 136-142. https://doi.org/10.1093/biohorizons/hzn014

Gaudio, N., Gendre, X., Saudreau, M., Seigner, V., & Balandier, P. (2017). Impact of tree canopy on thermal and radiative microclimates in a mixed temperate forest: A new statistical method to analyze hourly temporal dynamics. Agricultural and Forest Meteorology, 237-238, 71-79. https://doi.org/10.1016/j.agrformet.2017.02.010

Huey, R. B. (1974). Behavioral thermoregulation in lizards: importance of associated costs. Science, 184(4140), 1001-1003. https://doi.org/10.1126/science.184.4140.1001

Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In C. Gans, & F. H. Pough (eds). Biology of the Reptilia. Vol. 12, Physiology C. Physiological Ecology (pp. 25-91). Academic Press. https://carlgans.org/bor-view/?borv=12&borp=6

Huey, R. B., & Slatkin, M. (1976). Costs and benefits of lizard thermoregulation. The Quarterly Review of Biology, 51(3), 363-384. https://doi.org/10.1086/409470

Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist, 19(1), 357-366. https://doi.org/10.1093/icb/19.1.357

Huey, R. B., & Webster, T. P. (1976). Thermal biology of Anolis lizards in a complex fauna: the cristatellus group on Puerto Rico. Ecology, 57(5), 985-994. https://doi.org/10.2307/1941063

Izquierdo, J., Nogales, F., & Yánez, A. P. (2000). Análisis herpetofaunístico de un bosque húmedo tropical en la Amazonia Ecuatoriana. Ecotrópicos, 13(1), 29-42. http://www.saber.ula.ve/handle/123456789/25506

Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233-249. https://doi.org/10.1086/282487

Jungfer, K. H., Reichle, S., & Piskurek, O. (2010). Description of a new cryptic southwestern Amazonian species of leaf-gluing treefrog, genus Dendropsophus (Amphibia: Anura: Hylidae). Salamandra, 46(4), 204-213. https://www.salamandra-journal.com/index.php/home/contents/2010-vol-46/222-jungfer-k-h-s-reichle-o-piskurek

Kearney, M., Phillips, B. L., Tracy, C. R., Christian, K., Betts, A. G., & Porter, W. P. (2008). Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography ,31(4), 423-434. https://doi.org/10.1111/j.0906-7590.2008.05457.x

Kingsolver, J. G., & Woods, H. A. (1997). Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiological Zoology, 70(6), 631-638. https://doi.org/10.1086/515872

Kohlsdorf, T., & Navas, C. A. (2006). Ecological constraints on the evolutionary association between field and preferred temperatures in Tropidurinae lizards. Evolutionary Ecology, 20, 549-564. https://doi.org/10.1007/s10682-006-9116-x

Lescure, J., & Gasc, J. P. (1986). Partage de l’espace foretier par les amphibians et reptiles en Amazonie du nord-ouest. Caldasia, 15(71-75), 707-723. https://revistas.unal.edu.co/index.php/cal/article/view/35362

Lever, C. (2001). The cane toad. The history and ecology of a successful colonist. Westbury Academic and Scientific Publishing.

Malvin, G. M., & Wood, S. C. (1991). Behavioral thermoregulation of the toad, Bufo marinus: effects of air humidity. Journal of Experimental Zoology, 258(3), 322-326. https://doi.org/10.1002/jez.1402580307

Narayan, E. J., & Hero, J. M. (2014). Acute thermal stressor increases glucocorticoid response but minimizes testosterone and locomotor performance in the cane toad (Rhinella marina). PLoS ONE, 9, e92090. https://doi.org/10.1371/journal.pone.0092090

Navas, C. A. (1996). Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia, 108, 617-626. https://doi.org/10.1007/BF00329034

Navas, C. A., & Araujo, C. (2000). The use of agar models to study amphibian thermal ecology. Journal of Herpetology, 34(2), 330-334. https://doi.org/10.2307/1565438

Navas, C. A., & Bevier, C. R. (2001). Thermal dependency of calling performance in the eurythermic frog, Colostethus subpunctatus. Herpetologica, 57(3), 384-395. https://www.jstor.org/stable/3893104

Navas, C. A., Carvajalino-Fernández, J. M., Saboya-Acosta, L. P., Rueda-Solano, L. A., & Carvajalino-Fernández, M. A. (2013). The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Functional Ecology, 27(5), 1145-1154. https://doi.org/10.1111/1365-2435.12106

Navas, C. A., Gomes, F. R., & Carvalho, J. E. (2008). Thermal relationships and exercise physiology in anuran amphibians: Integration and evolutionary implications. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(3), 344-362. https://doi.org/10.1016/j.cbpa.2007.07.003

Noronha-de-Souza, C. R., Bovo, R. P., Gargaglioni, L. H., Andrade, D. V., & Bícego, K. C. (2015). Thermal biology of the toad Rhinella schneideri in a seminatural environment in southeastern Brazil. Temperature, 2(4), 554-562. https://doi.org/10.1080/23328940.2015.1096437

Novo, M. J. K. B. (2009). Thermal tolerance and sensitivity of amphibian larvae from paleartic and neotropical communities. Universidade de Lisboa. http://hdl.handle.net/10451/1416

Ojanguren, A. F., & Brañta, F. (2000). Thermal dependence of swimming endurance in juvenile brown trout. Journal of Fish Biology, 56, 1342-1347. https://doi.org/10.1111/j.1095-8649.2000.tb02147.x

Romero Barreto, P. G. (2013). Requerimientos fisiológicos y microambientales de dos especies de anfibios (Scinax ruber e Hyloxalus yasuni) del bosque tropical de Yasuní y sus implicaciones ante el cambio climático. Pontificia Universidad Católica del Ecuador. http://repositorio.puce.edu.ec/handle/22000/5726

Ruibal , R. (1961). Thermal relations of five species of tropical lizards. Evolution, 15(1), 98-111 https://doi.org/10.1111/j.1558-5646.1961.tb03132.x

Sanabria, E. A., Quiroga, L. B., & Martino, A. L. (2011). Seasonal changes in the thermal tolerances of the toad Rhinella arenarum (Bufonidae) in the Monte Desert of Argentina. Journal of Thermal Biology, 37(6), 409-412. https://doi.org/10.1016/j.jtherbio.2012.04.002

Seebacher, F., & Alford, R. A. (2002). Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). Journal of Herpetology, 36(1), 69-75. https://doi.org/10.1670/0022-1511(2002)036[0069:SMDBTA]2.0.CO;2

Vickers, M., Manicom, C., & Schwarzkopf, L. (2011). Extending the cost-benefit model of thermoregulation: high-temperature environments. The American Naturalist, 177(4), 452-461. https://doi.org/10.1086/658150

Vigle, G. O. (2008). The amphibians and reptiles of the Estación Biológica Jatun Sacha in the lowland rainforest of Amazonian Ecuador: a 20-year record. Breviora, 514(1), 1-30. https://doi.org/10.3099/0006-9698-514.1.1