Ecophysiological observations on the body temperatures of the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber from upper basin Amazon in northeastern Ecuador

Main Article Content

Marco A. Altamirano-Benavides
Guillermo A. Woolrich-Piña

Abstract

Ectothermic inhabitants of tropical forests are subjected to constant environmental temperatures, which determine their passive thermoregulatory strategies. We observe these trends during the summer of 2017, in the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber, in a tropical rainforest from the Upper Amazon Basin of Ecuador. D. bifurcus and S. ruber showed a tendency to tigmothermy, whereas R. marina presented tendencies towards heliothermy. Body temperatures (Tbs) did not differ between D. bifurcus and R. marina, but S. ruber presented a lower Tb. Our results suggest that thermal environment is influencing different thermoregulatory strategies as tigmothermy and heliothermy of frogs and toads distributed in tropical environments at low elevation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Altamirano-Benavides, M. A., & Woolrich-Piña, G. A. (2023). Ecophysiological observations on the body temperatures of the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber from upper basin Amazon in northeastern Ecuador. Siembra, 10(2), e4479. https://doi.org/10.29166/siembra.v10i2.4479
Section
Original article
Author Biographies

Marco A. Altamirano-Benavides, Universidad Central del Ecuador, Facultad de Ciencias Agrícolas. Jerónimo Leiton y Gatto Sobral S/N. Ciudadela Universitaria. C. P. 170521. Quito, Pichincha, Ecuador / Universidad Iberoamericana del Ecuador. Dirección de Investigación. Av. 9 de Octubre N25-12 y Colón. Quito, Ecuador

https://orcid.org/0000-0002-3082-8103

Guillermo A. Woolrich-Piña, Tecnológico Nacional de México, Campus Zacapoaxtla. División de Biología, Subdirección de Investigación y Posgrado, Laboratorio de Zoología y Ecofisiología. Carretera Acuaco-Zacapoaxtla km. 8, Col. Totoltepec, Zacapoaxtla. C. P. 73680. Puebla, México.

https://orcid.org/0000-0002-3421-7246

References

Acevedo, A. A., Lampo, M., & Cipriani, R. (2016). The cane or marine toad, Rhinella marina (Anura, Bufonidae): two genetically and morphologically distinct species. Zootaxa, 4103(6), 574-586. http://doi.org/10.11646/zootaxa.4103.6.7

Adolph, S. C., & Porter, W. P. (1993). Temperature, activity, and lizard life histories. The American Naturalist, 142(2), 273-295. https://doi.org/10.1086/285538

Almendáriz, A. (1987). Contribución al conocimiento de la herpetofauna centroriental Ecuatoriana. Politécnica, 12(4), 77-133. http://bibdigital.epn.edu.ec/handle/15000/4778

Alveal Riquelme, N. F. (2015). Relaciones entre la fisiología térmica y las características bioclimáticas de Rhinella spinulosa (Anura: Bufonidae) en Chile a través del enlace mecanicista de nicho térmico. Universidad de Concepción. http://repositorio.udec.cl/jspui/handle/11594/1797

Andrews, R. M. (1998). Geographic variation in field body temperature of Sceloporus lizards. Journal of Thermal Biology, 23(6), 329-334. https://doi.org/10.1016/S0306-4565(98)00018-7

Ayers, D. Y., & Shine, R. (1997). Thermal influences on foraging ability: body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Functional Ecology, 11(3), 342-347. https://doi.org/10.1046/j.1365-2435.1997.00093.x

Belliure, J., & Carrascal, L. M. (2002). Influence of heat transmission mode on heating rates and on the selection of patches for heating in a mediterranean lizard. Physiological and Biochemical Zoology, 75(4), 369-376. https://doi.org/10.1086/342768

Brattstrom, B. H. (1963). A Preliminary Review of the Thermal Requirements of Amphibians. Ecology, 44(2), 238-255. https://doi.org/10.2307/1932171

Cerón Martínez, C. E., Reyes, C. I., Montalvo Ayala, C., & Vargas Grefa, L. M. (2007). La cuenca alta del río Oglán, Pastaza-Ecuador, diversidad, ecología y flora. Editorial Universitaria.

Duellman, W. E. (1978). The biology of an equatorial herpetofauna in Amazonian Ecuador. University of Kansas.

Duellman, W. E., & Mendelson, J. R. III. (1995). Amphibians and reptiles from northern Departamento Loreto, Perú: Taxonomy and biogeography. The University of Kansas Science Bulletin, 55, 329-376. https://doi.org/10.5962/bhl.part.779

Fouquet, A., Vences, M., Salducci, M. D., Meyer, A., Marty, C., Blanc, M., & Gilles, A. (2007). Revealing cryptic diversity using molecular phylogenetics and phylogeography in frogs of the Scinax ruber and Rhinella margaritifera species groups. Molecular Phylogenetics and Evolution, 43(2), 567-582. https://doi.org/10.1016/j.ympev.2006.12.006

Frost, D. R. (2023). Amphibian Species of the World: an Online Reference. Version 6.2. American Museum of Natural History. https://doi.org/10.5531/db.vz.0001

Garrick, D. (2008). Body surface temperature and length in relation to the thermal biology of lizards. Bioscience Horizons: The International Journal of Student Research, 1(2), 136-142. https://doi.org/10.1093/biohorizons/hzn014

Gaudio, N., Gendre, X., Saudreau, M., Seigner, V., & Balandier, P. (2017). Impact of tree canopy on thermal and radiative microclimates in a mixed temperate forest: A new statistical method to analyze hourly temporal dynamics. Agricultural and Forest Meteorology, 237-238, 71-79. https://doi.org/10.1016/j.agrformet.2017.02.010

Huey, R. B. (1974). Behavioral thermoregulation in lizards: importance of associated costs. Science, 184(4140), 1001-1003. https://doi.org/10.1126/science.184.4140.1001

Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In C. Gans, & F. H. Pough (eds). Biology of the Reptilia. Vol. 12, Physiology C. Physiological Ecology (pp. 25-91). Academic Press. https://carlgans.org/bor-view/?borv=12&borp=6

Huey, R. B., & Slatkin, M. (1976). Costs and benefits of lizard thermoregulation. The Quarterly Review of Biology, 51(3), 363-384. https://doi.org/10.1086/409470

Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist, 19(1), 357-366. https://doi.org/10.1093/icb/19.1.357

Huey, R. B., & Webster, T. P. (1976). Thermal biology of Anolis lizards in a complex fauna: the cristatellus group on Puerto Rico. Ecology, 57(5), 985-994. https://doi.org/10.2307/1941063

Izquierdo, J., Nogales, F., & Yánez, A. P. (2000). Análisis herpetofaunístico de un bosque húmedo tropical en la Amazonia Ecuatoriana. Ecotrópicos, 13(1), 29-42. http://www.saber.ula.ve/handle/123456789/25506

Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233-249. https://doi.org/10.1086/282487

Jungfer, K. H., Reichle, S., & Piskurek, O. (2010). Description of a new cryptic southwestern Amazonian species of leaf-gluing treefrog, genus Dendropsophus (Amphibia: Anura: Hylidae). Salamandra, 46(4), 204-213. https://www.salamandra-journal.com/index.php/home/contents/2010-vol-46/222-jungfer-k-h-s-reichle-o-piskurek

Kearney, M., Phillips, B. L., Tracy, C. R., Christian, K., Betts, A. G., & Porter, W. P. (2008). Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography ,31(4), 423-434. https://doi.org/10.1111/j.0906-7590.2008.05457.x

Kingsolver, J. G., & Woods, H. A. (1997). Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiological Zoology, 70(6), 631-638. https://doi.org/10.1086/515872

Kohlsdorf, T., & Navas, C. A. (2006). Ecological constraints on the evolutionary association between field and preferred temperatures in Tropidurinae lizards. Evolutionary Ecology, 20, 549-564. https://doi.org/10.1007/s10682-006-9116-x

Lescure, J., & Gasc, J. P. (1986). Partage de l’espace foretier par les amphibians et reptiles en Amazonie du nord-ouest. Caldasia, 15(71-75), 707-723. https://revistas.unal.edu.co/index.php/cal/article/view/35362

Lever, C. (2001). The cane toad. The history and ecology of a successful colonist. Westbury Academic and Scientific Publishing.

Malvin, G. M., & Wood, S. C. (1991). Behavioral thermoregulation of the toad, Bufo marinus: effects of air humidity. Journal of Experimental Zoology, 258(3), 322-326. https://doi.org/10.1002/jez.1402580307

Narayan, E. J., & Hero, J. M. (2014). Acute thermal stressor increases glucocorticoid response but minimizes testosterone and locomotor performance in the cane toad (Rhinella marina). PLoS ONE, 9, e92090. https://doi.org/10.1371/journal.pone.0092090

Navas, C. A. (1996). Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia, 108, 617-626. https://doi.org/10.1007/BF00329034

Navas, C. A., & Araujo, C. (2000). The use of agar models to study amphibian thermal ecology. Journal of Herpetology, 34(2), 330-334. https://doi.org/10.2307/1565438

Navas, C. A., & Bevier, C. R. (2001). Thermal dependency of calling performance in the eurythermic frog, Colostethus subpunctatus. Herpetologica, 57(3), 384-395. https://www.jstor.org/stable/3893104

Navas, C. A., Carvajalino-Fernández, J. M., Saboya-Acosta, L. P., Rueda-Solano, L. A., & Carvajalino-Fernández, M. A. (2013). The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Functional Ecology, 27(5), 1145-1154. https://doi.org/10.1111/1365-2435.12106

Navas, C. A., Gomes, F. R., & Carvalho, J. E. (2008). Thermal relationships and exercise physiology in anuran amphibians: Integration and evolutionary implications. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(3), 344-362. https://doi.org/10.1016/j.cbpa.2007.07.003

Noronha-de-Souza, C. R., Bovo, R. P., Gargaglioni, L. H., Andrade, D. V., & Bícego, K. C. (2015). Thermal biology of the toad Rhinella schneideri in a seminatural environment in southeastern Brazil. Temperature, 2(4), 554-562. https://doi.org/10.1080/23328940.2015.1096437

Novo, M. J. K. B. (2009). Thermal tolerance and sensitivity of amphibian larvae from paleartic and neotropical communities. Universidade de Lisboa. http://hdl.handle.net/10451/1416

Ojanguren, A. F., & Brañta, F. (2000). Thermal dependence of swimming endurance in juvenile brown trout. Journal of Fish Biology, 56, 1342-1347. https://doi.org/10.1111/j.1095-8649.2000.tb02147.x

Romero Barreto, P. G. (2013). Requerimientos fisiológicos y microambientales de dos especies de anfibios (Scinax ruber e Hyloxalus yasuni) del bosque tropical de Yasuní y sus implicaciones ante el cambio climático. Pontificia Universidad Católica del Ecuador. http://repositorio.puce.edu.ec/handle/22000/5726

Ruibal , R. (1961). Thermal relations of five species of tropical lizards. Evolution, 15(1), 98-111 https://doi.org/10.1111/j.1558-5646.1961.tb03132.x

Sanabria, E. A., Quiroga, L. B., & Martino, A. L. (2011). Seasonal changes in the thermal tolerances of the toad Rhinella arenarum (Bufonidae) in the Monte Desert of Argentina. Journal of Thermal Biology, 37(6), 409-412. https://doi.org/10.1016/j.jtherbio.2012.04.002

Seebacher, F., & Alford, R. A. (2002). Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). Journal of Herpetology, 36(1), 69-75. https://doi.org/10.1670/0022-1511(2002)036[0069:SMDBTA]2.0.CO;2

Vickers, M., Manicom, C., & Schwarzkopf, L. (2011). Extending the cost-benefit model of thermoregulation: high-temperature environments. The American Naturalist, 177(4), 452-461. https://doi.org/10.1086/658150

Vigle, G. O. (2008). The amphibians and reptiles of the Estación Biológica Jatun Sacha in the lowland rainforest of Amazonian Ecuador: a 20-year record. Breviora, 514(1), 1-30. https://doi.org/10.3099/0006-9698-514.1.1