Partition of biomass and nitrogen in a potato crop under three nitrogen fertilization treatments

Main Article Content

Pedro Manuel Villa
Dra.
Dr.
Alice Cristina Rodrigues
Nelson Márquez
Wilmer Espinosa

Abstract

Nitrogen nutrition considerably influences the process of growing and producing potato crops. The aim of this study was to determine the effects of nitrogen nutrition on the pattern of biomass and nitrogen partitioning during the growth of potato crop in Mérida, Mérida, Venezuela. Experimental land plots were set, with a randomized blocks design, and with three different fertilization treatment settings for the "Granola" cultivar. The first one without nitrogen (0-N), the next one with 133 Kg N Ha-1 (133-N), and the last one with 400 Kg N Ha-1 (400-N). In the main phenological stages of the crop, biomass and nitrogen levels were measured for each organ. The performance of the tubers and the total biomass are strongly influenced by the availability of nitrogen and assimilatory biomass. The total biomass production, as well as the biomass and nitrogen partitioning to each organ, showed the following sequence: 400-N > 133-N > 0-N. However, biomass and nitrogen partitioning to the roots and stolons was higher in the treatment with limited nitrogen levels. Proportional changes among aboveground and belowground biomass are adaptive responses to nitrogen deficit conditions, which, in their turn, are determining factors in crop production.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Villa, P. M., Sarmiento, L., Rada, F. J., Rodrigues, A. C. ., Márquez, N., & Espinosa, W. (2020). Partition of biomass and nitrogen in a potato crop under three nitrogen fertilization treatments. Siembra, 7(2), 057–068. https://doi.org/10.29166/siembra.v7i2.2235
Section
Original article
Author Biographies

Pedro Manuel Villa, Universidade Federal de Viçosa, Programa de Pós-Graduação em Botânica, Viçosa, 36570-900, Minas Gerais, Brasil. Fundación para la Conservación de la Biodiversidad (PROBIODIVERSA), Mérida, Venezuela. Universidad de Los Andes (ULA), Instituto de Ciencias Ambientales y Ecológicas (ICAE), 5101, Mérida, Venezuela

https://orcid.org/0000-0003-4826-3187

Alice Cristina Rodrigues, Universidade Federal de Viçosa, Programa de Pós-Graduação em Botânica, Viçosa, 36570-900, Minas Gerais, Brasil.

https://orcid.org/0000-0001-5019-5297  

References

Alva, A. K., Hodges, T., Collins, H. P., & Oydston, R. A. (2002). Dry matter and nitrogen accumulation and partitioning in two potato cultivars. Journal Plant Nutrition and Soil Science, 25(8), 1621-1630. https://doi.org/10.1081/PLN-120006047

Devaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for Sustainable Global Food Security. Potato Research, 57, 185-199. https://doi.org/10.1007/s11540-014-9265-1

FAO (2012) FAO statistical databases FAOSTAT. From http://faostat3.fao.org/

Forde, B. G. (2002). The role of long-distance signalling in plant responses to nitrate and other nutrients. Journal of Experimental Botany, 53(366), 39-43. https://doi.org/10.1093/jexbot/53.366.39

Gastal, F., & Lemaire, G. (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, 53(370), 789-799. https://doi.org/10.1093/jexbot/53.370.789

Goméz, M. I, Magnitskiy, S., Rodriguez, L. H., & Darghan, A. E. (2017). Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. ssp. andigena) under contrasting soils of the Andean region of Colombia. Agronomía colombiana, 35(1), 59-67. https://doi.org/10.15446/agron.colomb.v35n1.61068

Greenwood, D. J., Gastal, F., Lemaire, G., Draycott, A., Millard, P., & Neeteson, J. J. (1991). Growth rate and % N of field grown crops: theory and experiments. Annals of Botany, 67(2), 181-190. https://doi.org/10.1093/oxfordjournals.aob.a088118

Lambers, H., & Oliveira, R. (2019). Plant physiological ecology. Switzerland: Springer Nature AG.

Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2007). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624. https://doi.org/10.1016/j.eja.2008.01.005

Machado, D., & Sarmiento, L. (2012). Respuesta del cultivo de papa a la combinación de diferentes fuentes de fertilización nitrogenada: evaluando la hipótesis de la sincronización. Bioagro, 24(2), 83-92.

Maltas, A., Dupuis, B., & Sinaj, S. (2018). Yield and Quality Response of Two Potato Cultivars to Nitrogen Fertilization. Potato Research, 61, 97–114. https://doi.org/10.1007/s11540-018-9361-8

Nurmanov, Y. T., Chernenok, V. G., & Kuzdanova, R. S. (2019). Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crops Research, 231(1), 115–121. https://doi.org/10.1016/j.fcr.2018.11.014

Ohamed, E. M. E., Watthier, M., Zanuncio, J. C., & Santos, R. H. S. (2017). Dry matter accumulation and potato productivity with green manure. Idesia, 35(1), 79-86. http://dx.doi.org/10.4067/S0718-34292017005000016

Passos, S., Kawakami, J., Nazareno, N. R. X., Santos, K.C., & Tamanini Junior, C. (2017). Produtividade de cultivares de batata orgânica em região subtropical do Brasil. Horticultura Brasileira, 35(4), 628-633. https://doi.org/10.1590/s0102-053620170424

Qiqige, S., Jia, L., Qin, Y., Chen, Y., & Fan, M. (2017). Effects of Different Nitrogen Forms on Potato Growth and Development. Journal of Plant Nutrition, 40(11), 1651-1659. https://doi.org/10.1080/01904167.2016.1269345

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. From https://www.R-project.org/

Sharifi, M., Zebarth, B. J., Porter, A., Burton, D. L., & Grant C. A. (2009). Soil mineralizable nitrogen and soil nitrogen supply under two-year potato rotations. Plant Soil, 320, 267-279. https://doi.org/10.1007/s11104-009-9892-5

Silva, J. G., França, M. G. C., Gomide, F. T., & Magalhaes, J. R. (2013). Different Nitrogen Sources Affect Biomass Partitioning and Quality of Potato Production in a Hydroponic System. American Journal of Potato Research, 90, 179-185. https://doi.org/10.1007/s12230-012-9297-5

Scheible, W. R., Gonzalez-Fontes, A., Lauerer, M., Müller-Röbert, B., Caboche, M., & Stitt, M. (1997). Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root partitioning in tobacco. The plant Journal, 11(4), 671-691. https://doi.org/10.1046/j.1365-313X.1997.11040671.x

Tiemens-Hulscher, M., Van Buere, E. T. L., & Struik, P. C. (2014). Identifying nitrogen-efficient potato cultivars for organic Farming. Euphytica, 199(1-2), 137-154. https://doi.org/10.1007/s10681-014-1143-z

Van Delden, A. (2001). Yield and growth components of potato and wheat under organic nitrogen management. Agronomy Journal, 93(6), 1370-1385. https://doi.org/10.2134/agronj2001.1370

Villa, P. M., Sarmiento, L., Rada, F. J., Machado, D., & Rodrigues, A. C. (2017). Leaf area index of potato (Solanum tuberosum L) crop under three nitrogen fertilization treatments. Agronomía Colombiana, 35(2), 171-175. http://dx.doi.org/10.15446/agron.colomb.v35n2.62110

Villa, P. M., & Sarmiento, L. (2009). Recomendación alternativa para la fertilización nitrogenada del cultivo de papa en los altos Andes venezolanos. INIA Hoy, 6, 191-199