Gene expression of BMPR1, BMPR2, and TGFBR1 in human dentin treated with different demineralizing solutions and adhesion of cultured apical papilla cells

Authors

DOI:

https://doi.org/10.29166/odontologia.vol23.n2.2021-e3440

Keywords:

Cell Differentiation, Cell Adhesion, EGTA, Regenerative Endodontics, Stem Cells

Abstract

The success of regenerative endodontic procedures depends on the decontamination of the endodontic space, the presence of undifferentiated mesenchymal cells, the release of growth factors that act as signaling molecules for cell attraction, proliferation and differentiation; and the presence of a “scaffold” that supports the organization and vascularization of the newly formed tissue. Objetive. Analyze specific chelating solutions of calcium EGTA, Citric Acid and EDTA in the release of growth factors (BMPR1, BMPR2 and TGFBR1) present in dentin as cell adhesion. Materials and Methods. Dentin discs were obtained from human premolars and third molars, after immersion for 1 minute with EDTA, EGTA and Citric Acid, the cells were seeded. Cell adhesion was assessed at 48 hours using MEV. Gene expression was determined at 7 and 21 days of cell culture. The statistical analysis was ANOVA followed by Tukey, with a significance level of 5%. Results. At 21 days, EGTA treatment significantly increased BMPR1 compared to PBS. No experimental conditions altered the expression of BMPR2. TGBR1 expression at 21 days increased significantly to EGTA treatment. Although there was not a uniform distribution of cells throughout the discs, cell adhesion was observed in all experimental groups. Conclusions. The type of demineralizing solution interferes with the amount of growth factors BMPR1 and TGFBR1 released from human dentin and does not interfere with cell adhesion.

Downloads

Download data is not yet available.

Author Biographies

Paola Daniela Hidalgo Araujo, Universidad Central del Ecuador

Docente; Facultad de Odontología; Universidad Central del Ecuador; Quito, Ecuador

Ana Clara Fagundes Pedroni, Universidad de São Paulo

Facultad de Odontología de la Universidad de São Paulo, São Paulo/ SP- Brasil

Lais Prado Cunha, Universidad de São Paulo

Facultad de Odontología de la Universidad de São Paulo, São Paulo/ SP- Brasil

Elaine Faga Iglecias, Universidad de São Paulo

Facultad de Odontología de la Universidad de São Paulo, São Paulo/ SP- Brasil

Giulio Gavini, Facultad de Odontología Campinas

Facultad de Odontología Campinas, São Paulo/ SP- Brasil

References

Bose R, Nummikoski P, Hargreaves K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J Endod 2009;35:1343-9.

Rafter M. Apexification: a review. Dent Traumatol 2005;21:1–8.

Witherspoon D, Small J, Regan J, et al. Retrospective Analysis of Open Apex Teeth Obturated with Mineral Trioxide Aggregate. J Endod. 2008:34:1171-6.

Shah N, Logani A, Bhaskar U, Aggarwal V. Efficacy of revascularization to induce apexification/apexogensis in infected, nonvital, immature teeth: a pilot clinical study. J Endod. 2008 Aug;34(8):919-25.

Wang X, Thibodeau B, Trope M, Lin LM, Huang GT. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod. 2010 Jan;36(1):56-63.

Bansal R, Bansal R. Regenerative endodontics: a state of the art. Indian J Dent Res. 2011 Jan-Feb;22(1):122-31.

Zhang W, Yelick PC. Vital pulp therapy-current progress of dental pulp regeneration and revascularization. Int J Dent. 2010;2010:856087.

Huang GT, Sonoyama W, Liu Y, Lin H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/ dentin regeneration and bioroot engineering. J Endod. 2008 Jun;34(6):645-51.

Gomes-Filho JE, Duarte PC, Ervolino E, Mogami Bomfim SR, Xavier Abimussi CJ, Mota da Silva Santos L, et al. Histologic characterization of engineered tissues in the canal space of closed- apex teeth with apical periodontitis. J Endod. 2013.

AAE- American Association of Endodontics. Considerations for Regenerative Procedures [citado 1 out. 2013]. Disponível em: http://www.aae.org/clinicalresources/regenerativeendodontics/considerations-for- regenerativeprocedures.aspx.

Wigler R, Kaufman AY, Lin S, et al. Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development. J Endod 2013;39:319–26.

Clarkson RM, Moule AJ. Sodium hypochlorite and its use as an endodontic irrigant. Aust Dent J. 1998 Aug;43(4):250-6.

Gavini G, Siqueira EL, Lemos EM, Amaral KF. Substancias Químicas. In: MACHADO MEL. Endodoncia – Ciencia y Tecnologia. Caracas: AMOLCA; 2016. p. 539-577.

Trevino EG, Patwardhan AN, Henry MA, et al. Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. J Endod 2011;37:1109–15.

Tziafas D, Alvanou A, Panagiotakopoulos N, Smith AJ, Lesot H, Komnenou A, Ruch JV. Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Arch Oral Biol. 1995 Oct;40(10):883-93.

Zhao S, Sloan AJ, Murray PE, Lumley PJ, Smith AJ. Ultrastructural localisation of TGF-beta exposure in dentine by chemical treatment. Histochem J. 2000 Aug;32(8):489-94.

Pang N, Seung Jong Lee, Euiseong Kim, et al. Effect of EDTA on Attachment and Differentiation of Dentária Pulp Stem Cells. J Endod. 2014 Jun;40:5.

Galler k, Buchalla W, Hiller K, et al. Influence of Root Canal Disinfectants on Growth Factor Release from Dentin. J Endod. 2015:41:363-8.

Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2011 Sep;121(6):233-51.

Cassidy N, Fahey M, Prime SS, Smith AJ. Comparative analysis of transforming growth factor-beta isoforms 1-3 in human and rabbit dentine matrices. Arch Oral Biol. 1997 Mar;42(3):219-23.

Toyono T, Nakashima M, Kuhara S, Akamine A. Expression of TGF-beta superfamily receptors in dental pulp. J Dent Res. 1997 Sep;76(9):1555-60

Sloan AJ, Smith AJ. Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Arch Oral Biol.1999 Feb;44(2):149-56.

Shirakawa M, Shiba H, Nakanishi K, Ogawa T, Okamoto H, Nakashima K, Noshiro M, Kato Y. Transforming growth factor-beta-1 reduces alkaline phosphatase mRNA and activity and stimulates cell proliferation in cultures of human pulp cells. J Dent Res. 1994 Sep;73(9):1509-14.

Shiba H, Fujita T, Doi N, Nakamura S, Nakanishi K, Takemoto T, Hino T, Noshiro M, Kawamoto T, Kurihara H, Kato Y. Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture. J Cell Physiol. 1998 Feb;174(2):194-205.

Melin M, Joffre-Romeas A, Farges JC, Couble ML, Magloire H, Bleicher F. Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res. 2000 Sep;79(9):1689-96.

Kim M, Choe S. BMPs and their clinical potentials. BMB Rep. 2011 Oct;44(10):619-34.

Solofomalala GD, Guery M, Lesiourd A, Le Huec JC, Chauveaux D, LaVenetre O. Bone morphogenetic proteins: from their discoveries till their clinical applications. Eur J Orthop Surg Traumatol. 2007;17(6):609-15.

Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004 Dec;22(4):233-41. Review. PubMed PMID: 15621726.

Matthews SJ. Biological activity of bone morphogenetic proteins (BMP’s). Injury. 2005 Nov;36 Suppl 3:S34-7.

Ivica A, Deari S, Patcas R, Weber FE, Zehnder M. Transforming Growth Factor Beta 1 Distribución y Contenido en la Dentina raíz de jóvenes maduros e inmaduros premolares humanos. J Endod. 2020 mayo;46(5):641-647.

Galler KM, Widbiller M, Buchalla W, Eidt A, Hiller KA, Hoffer PC, Schmalz G. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016 Jun;49(6):581-90.

Hashimoto K, Kawashima N, Ichinose S, Nara K, Noda S, Okiji T. EDTA Treatment for Sodium Hypochlorite-treated Dentin Recovers Disturbed Attachment and Induces Differentiation of Mouse Dental Papilla Cells. J Endod. 2018 Feb;44(2):256-262.

Serper A, Çalt S. The demineralizing effects of EDTA at different concentrations and pH. J Endod 2002;28:501-2.

Sousa-Neto M, Passarinho-neto J, Carvalho-júnior J, et al. Evaluation of the Effect of EDTA, EGTA and CDTA on Dentin Adhesiveness and Microleakage with Different Root Canal Sealers. Braz Dent J (2002) 13(2): 123-128.

Sousa S e Silva T. Desmineralization effect of EDTA, EGTA, CDTA and citric acido n root dentin: a comparative study. Braz Oral Res 2005 19:3.

Calt S, Serper A. Smear layer removal by EGTA. J Endod. 2000 Aug;26(8):459-61.

Scelza MF, Pinheiro Daniel RLD, Santos EM, Jaeger MMM. Cytotoxic effects of 10% citric acid and EDTA-T used as root canal irrigants: an in vitro analysis. J Endod 2001;27:741-3.

Scelza MFZ, Teixeira AM, Scelza P. Decalcifying effect of EDTA-T, 10% citric acid and 17% EDTA on root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol 2003;95:234-6.

Amaral KF, Rogero MM, Fock RA, Borelli P, Gavini G. Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture. Int Endod J.2007 May;40(5):338-43.

Smith AJ, Leaver AG. Non-collagenous components of the organic matrix of rabbit incisor dentine. Arch Oral Biol. 1979;24(6):449-54.

Mazzoni A, Pashley DH, Tay FR, Gobbi P, Orsini G, Ruggeri A Jr, Carrilho M, Tjäderhane L, Di Lenarda R, Breschi L. Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis. J Biomed Mater Res A. 2009 Mar 1;88(3):697-703.

Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol. 2000 Nov;45(11):1013-6.

Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000 Feb;28(2):77-92.

Bacakova L, Filova E, Parizek M, et al. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29: 739–67.

Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005 Jun 8;127(22):8168-73.

Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M. Influence of surface wettability on competitive protein adsorption and initialattachment of osteoblasts. Biomed Mater. 2009 Aug;4(4):045002.

Huang X, Zhang J, Huang C, Wang Y, Pei D. Effect of intracanal dentine wettability on human dental pulp cell attachment. Int Endod J. 2012 Apr;45(4):346-53.

Published

2021-07-30

How to Cite

Hidalgo Araujo, P. D., Fagundes Pedroni, A. C., Prado Cunha, L., Faga Iglecias, E., & Gavini, G. (2021). Gene expression of BMPR1, BMPR2, and TGFBR1 in human dentin treated with different demineralizing solutions and adhesion of cultured apical papilla cells. Odontología, 23(2), e3440. https://doi.org/10.29166/odontologia.vol23.n2.2021-e3440

Issue

Section

Scientific article