Generación de mapas de permeabilidad de suelos. Estudio de caso en dos cantones de la provincia de Loja, Ecuador
Contenido principal del artículo
Resumen
La generación de mapas de permeabilidad se basa en el análisis e interpretación de la geología, la morfología ambiental, el uso del suelo y la pendiente, lo que permite seleccionar áreas de muestreo con características similares. El método representa la integración de las características físicas del área de estudio y luego determina las diferencias de capacidad de infiltración en las unidades geopedológicas más representativas. En la determinación de los datos básicos se utilizaron infiltrómetros minidisco para realizar setenta y dos pruebas de infiltración en diferentes tipos de suelos con diferente contenido de materia orgánica, textura, estructura del suelo y cobertura vegetal, lo que permitió evidenciar la variabilidad espacial que existe en dos cantones de la provincia de Loja, Ecuador. Además, se observó que la tasa de infiltración dependía principalmente del contenido de materia orgánica en el suelo y es consistente con la información recopilada sobre permeabilidad a nivel mundial. En este estudio se generó el coeficiente de determinación de la función de pedotransferencia (FTP) R2 0.78, la determinación del coeficiente indica una estimación satisfactoria de la permeabilidad con las variables que se analizaron; además, la metodología para evaluar la permeabilidad fue adecuada para las condiciones de esta investigación. Por esta razón, el método aquí descrito debería ser probado en otras zonas del país con un mayor número de ensayos de campo y con contenidos más variables de materia orgánica y clases texturales del suelo.
Descargas
Métricas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en Siembra conocen y aceptan las siguientes condiciones:
- Los autores retienen los derechos de copia (copyright) y ceden a la revista SIEMBRA el derecho de primera publicación del trabajo, bajo licencia Creative Commons Attribution License, que permite a terceros utilizar lo publicado siempre que hagan referencia al autor o autores del trabajo y a su publicación en esta revista.
Esta obra está bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0).
- Los autores conservan los derechos de autor y garantizan a la Revista Siembra el derecho de publicar el manuscrito a través de los canales que considere adecuados.
- Los autores pueden establecer por su cuenta acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la Revista Siembra, haciendo reconocimiento de su publicación inicial en la misma, como por ejemplo en repositorios institucionales.
Se autoriza a los autores a difundir sus trabajos electrónicamente una vez sea aceptado el manuscrito para su publicación.
Citas
Angulo-Jaramillo, R., Vandervaere, J. P., Roulier, S., Thony, J. L., Gaudet, J. P., & Vauclin, M. (2000). Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil and Tillage Research, 55(1-2), 1-29. https://doi.org/10.1016/S0167-1987(00)00098-2
Ankeny, M. D. (1992). Methods and theory for unconfined infiltration measurements. In G. Clarke Topp, W. D. Reynolds, & R. E. Green (ed.), Advances in measurement of soil Physical properties: Bringing Theory into Practice (pp. 123-141). SSSA Special Publications. Soil Science Society of America, Inc. https://doi.org/10.2136/sssaspecpub30.c7
Ankeny, M. D., Ahmed, M., Kaspar, T. C., & Horton, R. (1991). Simple field method for determining unsaturated hydraulic conductivity. Soil Science Society of America Journal, 55(2), 467-470. https://doi.org/10.2136/SSSAJ1991.03615995005500020028X
Ankeny, M. D., Kaspar, T. C., & Horton, R. (1988). Design for an automated tension infiltrometer. Soil Science Society of America Journal, 52(3), 893-896. https://doi.org/10.2136/SSSAJ1988.03615995005200030054X
Aoki, A. M., & Sereno, R. (2005). Comparación de metodologías de cálculo de propiedades hidráulicas de un suelo a partir de datos medidos con infiltrómetro de disco. Agricultura Técnica, 65(2), 204-209. https://doi.org/10.4067/S0365-28072005000200010
Babalola, O. (1978). Spatial variability of soil water properties in tropical soils of Nigeria. Soil Science, 126(5), 269-279. https://doi.org/10.1097/00010694-197811000-00003
Bens, O., Buczko, U., Sieber, S., & Hüttl, R. F. (2006). Spatial variability of O layer thickness and humus forms under different pine beech–forest transformation stages in NE Germany. Journal of Plant Nutrition and Soil Science, 169(1), 5-15. https://doi.org/10.1002/JPLN.200521734
Bosch, D. D., & West, L. T. (1998). Hydraulic Conductivity Variability for Two Sandy Soils. Soil Science Society of America Journal, 62(1), 90-98. https://doi.org/10.2136/SSSAJ1998.03615995006200010012X
Bouyoucus, G. J. (1927). The hydrometer as new method for the mechanical analyses of soil. Soil Science, 23, 343-353. http://dx.doi.org/10.1097/00010694-192705000-00002
Byers, E., & Stephens, D. B. (1983). Statistical and stochastic analyses of hydraulic conductivity and particle-size in a fluvial sand. Soil Science Society of America Journal, 47(6), 1072-1081. https://doi.org/10.2136/SSSAJ1983.03615995004700060003X
Carlón Allende, T., & Mendoza, M. (2007). Análisis hidrometeorológico de las estaciones de la cuenca del lago de Cuitzeo. Investigaciones Geograficas, (63), 56. https://doi.org/10.14350/rig.29910
Casanova, M., Seguel, O., & Joel, A. (2003). Funciones de pedotransferencia para conductividad hidráulica en laderas de secano. Revista de la Ciencia del Suelo y Nutrición Vegetal, 3(2), 42-48.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010a). Mapa escala 1:250.000, Carta de Geomorfología, Hoja de Catamayo. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010b). Mapa escala 1:250.000, Carta de Geomorfología, Hoja de Gonzanamá. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010c). Mapa escala 1:250.000, Carta de Morfología, Hoja de Catamayo. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010d). Mapa escala 1:250.000, Carta de Pendientes, Hoja de Catamayo. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010e). Mapa escala 1:250.000, Carta de Pendientes, Hoja de Gonzanamá. Instituto Geográfico Militar.
Cisneros, R. (2003). Apuntes de la materia Riego y Drenaje. Universidad Autónoma de San Luis de Potosí. http://www.ingenieria.uaslp.mx/Documents/Apuntes/Riego
Comegna, V., & Vitale, C. (1993). Space-time analysis of water status in a volcanic Vesuvian soil. Geoderma, 60(1-4), 135-158. https://doi.org/10.1016/0016-7061(93)90023-E
Espinosa, J., & Rivera, D. (2016). Variations in water resources availability at the Ecuadorian páramo due to land-use changes. Environmental Earth Sciences, 75(16), 1-15. https://doi.org/10.1007/s12665-016-5962-1
Gavin, K., & Xue, J. (2008). A simple method to analyze infiltration into unsaturated soil slopes. Computers and Geotechnics, 35(2), 223-230. https://doi.org/10.1016/J.COMPGEO.2007.04.002
Genuchten, M. Th. van. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/SSSAJ1980.03615995004400050002X
Guatibonza, M., Álvarez-Herrera, J. G., & Sanabria, J. E. (2009). Distribución espacial de la conductividad hidráulica en un lote de la granja Tunguavita (Paipa, Colombia). Agronomía Colombiana, 27(2), 261-271. https://revistas.unal.edu.co/index.php/agrocol/article/view/11208
Haverkamp, R., Parlange, J. -Y., Starr, J. L., Schmitz, G., & Fuentes, C. (1990). Infiltration under ponded conditions: 3. A predictive equation based on physical parameters. Soil Science, 149(5), 292-300. https://doi.org/10.1097/00010694-199005000-00006
Hincapié Gómez, E., & Tobón Marín, C. (2012). Dinámica del agua en andisoles bajo condiciones de ladera. Revista Facultad Nacional de Agronomía Medellín, 65(2). https://revistas.unal.edu.co/index.php/refame/article/view/36490
Instituto Nacional de Estadística y Censos [INEC]. (2000). Censo Nacional Agropecuario. INEC. https://www.ecuadorencifras.gob.ec/censo-nacional-agropecuario/
Kirkham, M. B. (2005). Principles of soil and plant water relations. Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-409751-3.X5000-2
Lal, R., & Taylor, G. S. (1970). Drainage and nutrient effects in a field lysimeter study: II. Mineral uptake by corn. Soil Science Society of America Journal, 34(2), 245-248. https://doi.org/10.2136/SSSAJ1970.03615995003400020020X
Li, M., Liu, T., Duan, L., Luo, Y., Ma, L., Zhang, J., Zhou, Y., & Chen, Z. (2019). The scale effect of double-ring infiltration and soil infiltration zoning in a semi-arid steppe. Water, 11(7), 1457. https://doi.org/10.3390/W11071457
Meijerink, A. M. J. (1988). Data acquisition and data capture through terrain mapping units. ITC JournaL, 7, 23-44.
Miyazaki, T. (1993). Water flow in soils. Marcel Dekker.
Moglen, G. E., Asce, F., Sadeq, H., Hughes Ii, L. H., Meadows, M. E., Miller, J. J., Asce, M., Ramirez-Avila, J. J., & Tollner, E. W. (2022). NRCS curve number method: comparison of methods for estimating the curve number from rainfall-runoff data. Journal of Hydrologic Engineering, 27(10), 04022023. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002210
Monsalve, G. (2006). Hidrología en la ingeniería (2nd ed.). Escuela Colombiana de Ingeniería.
Nelson, D. W., & Sommers, L. E. (2018). Total Carbon, Organic Carbon, and Organic Matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (eds.), Methods of Soil Analysis, Part 3: Chemical Methods (pp. 961-1010). SSSA Book Series. Science Society of America, Inc. https://doi.org/10.2136/sssabookser5.3.c34
Paz González, A., Thonon, I., Bertolani, F. C., Taboada Castro, M. M., Vidal-Vázquez, E., & Dafonte Dafonte, J. (2001). Variabilidad espacial de la infiltración en una ladera determinada con permeámetro de Guelph e infiltrómetro de tensión. En J. J. López Rodríguez, & M. Quemada (eds.), Temas de investigación en zona no saturada: actas de las V Jornadas sobre Investigación en la Zona no Saturada. Universidad Pública de Navarra = Nafarroako Unibertsitate Publikoa, Servicio de Publicaciones. https://abe.ufl.edu/faculty/carpena/files/pdf/zona_no_saturada/temas_de_investigacion_v5/12.pdf
Philip, J. R. (1991). Infiltration and downslope unsaturated flows in concave and convex topographies. Water Resources Research, 27(6), 1041-1048. https://doi.org/10.1029/91WR00129
Rawls, W. J., & Brakensiek, D. L. (1985). Prediction of soil water properties for hydrologic modeling. In E. B. Jones, & T. J. Ward (eds.) Watershed Management in the Eighties. Proc. of Symp. sponsored by Comm. on Watershed Management (pp. 293-299). ASCE. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0044472
Rawls, W. J., Brakensiek, D. L., & Miller, N. (1983). Greenampt Infiltration parameters from soils data. Journal of Hydraulic Engineering, 109(1), 62-70. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62)
Reynolds, W. D., Elrick, D. E., Youngs, E. G., Amoozegar, A., Booltink, H. W. G., & Bouma, J. (2002): Saturated and field-saturated water flow parameters. In J. H. Dane, & G. C. Topp (eds.), Methods of Soil Analysis, Part 4—Physical Methods (pp. 797-878). SSSA Book Series No. 5. Soil Science Society of America.
Ritsema, C. J., Oostindie, K., & Stolte, J. (1996). Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model. Hydrological Processes, 10(8), 1091-1105. https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1091::AID-HYP414>3.0.CO;2-J
Rodríguez Vidal, J. (1987). Aportación de la geomorfología aplicada a la ordenación del territorio y el medio ambiente en el occidente andaluz. Revista de Estudios Andaluces, (9), 41-54. https://doi.org/10.12795/rea.1987.i09.02
Romero Díaz, A., Quiñonero Rubio, J. M., López Martínez, M., & Ruiz Sinoga, J. D. (2010). Aplicación de técnicas SIG en el estudio de evaluación de degradación de suelos. Mazarrón (Murcia). In J. Ojeda, M. F. Pita, & I. Vallejo (eds.), Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos (pp. 1074-1089). Secretariado de Publicaciones de la Universidad de Sevilla. http://hdl.handle.net/11441/66694
Ruiz Sinoga, J. D., Lucas Santamaría, B., Romero Lopera, A., Noguera Robles, M. J., Gallegos Reina, A., Márquez Carrero, J. & Martínez Murillo, J. F. (2003). Determinación de la conductividad hidráulica en laderas mediante el uso de infiltrómetros de minidisco a lo largo de un gradiente pluviométrico mediterráneo. In J. Álvarez Benedí, & P. Marinero Díez (coord.), Estudios de la zona no saturada del suelo (pp. 143-152). Instituto Tecnológico Agrario de Castilla y León. https://dialnet.unirioja.es/servlet/articulo?codigo=4786431
Salton, J. C., & Mielniczuck, J. (1995). Relaciones entre sistemas de preparo, temperatura e umidade de um Podzólico Vermelho-Escuro de Eldorado do Sul (RS). Revista Brasileira de Ciência Do Solo, 19, 313-319.
Shukla, M. K., Lal, R., & Ebinger, M. (2003). Tillage effects on physical and hydrological properties of a typic argiaquoll in central Ohio. Soil Science, 168(11), 802-811. https://doi.org/10.1097/01.SS.0000100470.96182.4A
Sivapalan, M., & Wood, E. F. (1986). Spatial heterogeneity and scale in the infiltration response of catchments. In: V. K. Gupta, I. Rodríguez-Iturbe, & E. F. Wood, (eds.), Scale Problems in Hydrology. Water Science and Technology Library, vol 6. Springer. https://doi.org/10.1007/978-94-009-4678-1_5
Smettem, K. R. J., Parlange, J. Y., Ross, P. J., & Haverkamp, R. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-based theory. Water Resources Research, 30(11), 2925-2929. https://doi.org/10.1029/94WR01787
Tornés Oliveras, N., Gómez Masjuán, Y., & Boicet Fabre, T. (2013). Evaluación de la calidad del riego de la máquina con enrollador modelo IRROMOTOR. Revista Ciencias Técnicas Agropecuarias, 22(1), 39-44. https://rcta.unah.edu.cu/index.php/rcta/article/view/190
Varni, M., Gandini, M., Estraigas, I., & Vázquez, P. (2005). Propuesta y comparación de metodologías para la determinación y mapeo de áreas anegadas mediante el uso de imágenes Landsat. En Actas del XX Congreso Nacional del Agua CONAGUA. Mendoza.
Vereecken, H., Maes, J., Feyen, J., & Darius, P. (1989). Estimating the soil moisture retention characteristics from texture, bulk density, and carbon content. Soil Science, 148(6), 389-403. https://doi.org/10.1097/00010694-198912000-00001
Walkley, A. & Black, I. A. (1934). An examination of the degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003
Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. http://dx.doi.org/10.1097/00010694-194704000-00001
White, I., & Sully, M. J. (1987). Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resources Research, 23(8), 1514-1522. https://doi.org/10.1029/WR023I008P01514
Williams, R. D., Ahuja, L.R., & Naney, J. W. (1992). Comparison of methods to estimate soil water characteristics from limited texture, bulk density, and limited data. Soil Science, 153(3), 172-184. http://dx.doi.org/10.1097/00010694-199203000-00002
Wilson, G. V., & Luxmoore, R. J. (1988). Infiltration, macroporosity, and mesoporosity distributions on two forested watersheds. Soil Science Society of America Journal, 52(2), 329-335. https://doi.org/10.2136/SSSAJ1988.03615995005200020005X
Winckell, A., Marocco, R., Winter, T., Huttel, C., Pourrut, P., Zebrowski, C. & Sourdat, M. (1997). Los Paisajes naturales del Ecuador: Tomo IV – Geografía Física, Volumen 1 – Las condiciones generales del medio natural. Serie Geografía Básica del Ecuador. Centro Ecuatoriano de Investigación Geográfica. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/doc34-07/010022380.pdf
Winckell, A., Zebrowski, C. & Sourdat, M. (2000). Los Paisajes naturales del Ecuador: Tomo IV – Geografía Física, Volumen 2 – Las regiones y paisajes del Ecuador. Serie Geografía Básica del Ecuador. Centro Ecuatoriano de Investigación Geográfica. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010011845.pdf
Winckell, A., Zebrowski, C., & Delaune, M. (1991). Evolution du modèle quaternaire et des formations superficielles dans les Andes de l’Equateur : 2. Quelques aspects de l’histoire paléogéographique quaternaire. Géodynamique, 6(2), 119-139. https://www.documentation.ird.fr/hor/fdi:010011259
Zhang, R. (1997). Infiltration models for the disk infiltrometer. Soil Science Society of America Journal, 61(6), 1597-1603. https://doi.org/10.2136/SSSAJ1997.03615995006100060008X
Zhang, Y., Butters, G. L., Cardon, G. E., & Smith, R. E. (1999). Analysis and testing of a concentric-disk tension infiltrometer. Soil Science Society of America Journal, 63(3), 544-553. https://doi.org/10.2136/SSSAJ1999.03615995006300030017X
Zimmermann, E. D., & Basile, P. A. (2007). Funciones hidráulicas de suelos limosos: regresiones no lineales con propiedades físicas y granulométricas. En XXI Congreso Nacional del Agua. https://www.fceia.unr.edu.ar/curiham/es/wp-content/uploads/2018/11/con10-CNA071.pdf
Zimmermann, E. D., & Basile, P. A. (2008). Uso de funciones de pedotransferencia para la estimación de parámetros hidráulicos en suelos limosos (Llanura Argentina). Boletín Geológico y Minero, 119(1), 71-80. https://www.igme.es/boletin/2008/119_1_2008/ARTICULO%206.pdf
Zinck, J. A. (1988). Physiography and Soils. ITC Lecture Note SOL. 4.1. International Institute for Geoinformation Science and Earth Observation (ITC). https://webapps.itc.utwente.nl/librarywww/papers_1989/tech/zinck_phy.pdf