Generation of soil maps permeability. Case study in two cantons of Loja province, Ecuador

Main Article Content

Jorge Andrés Espinosa Marín
https://orcid.org/0000-0002-7924-7502
Diego Rivera
Renato Haro Prado

Abstract

The generation of permeability maps is based on the analysis and interpretation of geology, environmental morphology, land use, and slope, which enables the selection of sampling areas with similar characteristics. The method represents the integration of the physical characteristics of the study area and then determines the infiltration capacity differences in the most representative geopedologic units. In determining the basic data, minidisc infiltrometers were used to perform seventy-two infiltration tests in different types of soils with varying organic matter content, texture, soil structure, and vegetation cover, which showed the spatial variability that exists in two cantons of Loja province, Ecuador. In addition, it was observed that the infiltration rate depended mainly on the content of the organic matter in the soil and is consistent with information collected on permeability worldwide. In this study, generated pedotransfer function (FTP) coefficient of determination R2 0.78, the determination of the coefficient indicates a satisfactory estimate of the permeability with the variables that were analyzed; in addition, the methodology for assessing the permeability was suitable for the conditions of this investigation. For this reason, the method described here should be tested in other areas of the country with a greater number of field trials and with more variable contents of organic matter and soil textural classes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Espinosa Marín, J. A., Rivera, D., & Haro Prado, R. . (2023). Generation of soil maps permeability. Case study in two cantons of Loja province, Ecuador. Siembra, 10(1), e4321. https://doi.org/10.29166/siembra.v10i1.4321
Section
Original article
Author Biographies

Jorge Andrés Espinosa Marín, Universidad Central del Ecuador, Facultad de Ciencias Agrícolas. Jerónimo Leiton y Gatto Sobral S/N. Ciudadela Universitaria. 170521. Quito. Pichincha, Ecuador

https://orcid.org/0000-0002-7924-7502

Diego Rivera, Universidad del Desarrollo, Facultad de Ingeniería. Ainavillo 456. 4070001. Santiago de Chile, Chile

https://orcid.org/0000-0003-0916-1540

Renato Haro Prado, Universidad Central del Ecuador, Facultad de Ciencias Agrícolas. Jerónimo Leiton y Gatto Sobral S/N. Ciudadela Universitaria. 170521. Quito. Pichincha, Ecuador

https://orcid.org/0000-0003-3889-5332

References

Angulo-Jaramillo, R., Vandervaere, J. P., Roulier, S., Thony, J. L., Gaudet, J. P., & Vauclin, M. (2000). Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil and Tillage Research, 55(1-2), 1-29. https://doi.org/10.1016/S0167-1987(00)00098-2

Ankeny, M. D. (1992). Methods and theory for unconfined infiltration measurements. In G. Clarke Topp, W. D. Reynolds, & R. E. Green (ed.), Advances in measurement of soil Physical properties: Bringing Theory into Practice (pp. 123-141). SSSA Special Publications. Soil Science Society of America, Inc. https://doi.org/10.2136/sssaspecpub30.c7

Ankeny, M. D., Ahmed, M., Kaspar, T. C., & Horton, R. (1991). Simple field method for determining unsaturated hydraulic conductivity. Soil Science Society of America Journal, 55(2), 467-470. https://doi.org/10.2136/SSSAJ1991.03615995005500020028X

Ankeny, M. D., Kaspar, T. C., & Horton, R. (1988). Design for an automated tension infiltrometer. Soil Science Society of America Journal, 52(3), 893-896. https://doi.org/10.2136/SSSAJ1988.03615995005200030054X

Aoki, A. M., & Sereno, R. (2005). Comparación de metodologías de cálculo de propiedades hidráulicas de un suelo a partir de datos medidos con infiltrómetro de disco. Agricultura Técnica, 65(2), 204-209. https://doi.org/10.4067/S0365-28072005000200010

Babalola, O. (1978). Spatial variability of soil water properties in tropical soils of Nigeria. Soil Science, 126(5), 269-279. https://doi.org/10.1097/00010694-197811000-00003

Bens, O., Buczko, U., Sieber, S., & Hüttl, R. F. (2006). Spatial variability of O layer thickness and humus forms under different pine beech–forest transformation stages in NE Germany. Journal of Plant Nutrition and Soil Science, 169(1), 5-15. https://doi.org/10.1002/JPLN.200521734

Bosch, D. D., & West, L. T. (1998). Hydraulic Conductivity Variability for Two Sandy Soils. Soil Science Society of America Journal, 62(1), 90-98. https://doi.org/10.2136/SSSAJ1998.03615995006200010012X

Bouyoucus, G. J. (1927). The hydrometer as new method for the mechanical analyses of soil. Soil Science, 23, 343-353. http://dx.doi.org/10.1097/00010694-192705000-00002

Byers, E., & Stephens, D. B. (1983). Statistical and stochastic analyses of hydraulic conductivity and particle-size in a fluvial sand. Soil Science Society of America Journal, 47(6), 1072-1081. https://doi.org/10.2136/SSSAJ1983.03615995004700060003X

Carlón Allende, T., & Mendoza, M. (2007). Análisis hidrometeorológico de las estaciones de la cuenca del lago de Cuitzeo. Investigaciones Geograficas, (63), 56. https://doi.org/10.14350/rig.29910

Casanova, M., Seguel, O., & Joel, A. (2003). Funciones de pedotransferencia para conductividad hidráulica en laderas de secano. Revista de la Ciencia del Suelo y Nutrición Vegetal, 3(2), 42-48.

Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010a). Mapa escala 1:250.000, Carta de Geomorfología, Hoja de Catamayo. Instituto Geográfico Militar.

Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010b). Mapa escala 1:250.000, Carta de Geomorfología, Hoja de Gonzanamá. Instituto Geográfico Militar.

Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010c). Mapa escala 1:250.000, Carta de Morfología, Hoja de Catamayo. Instituto Geográfico Militar.

Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010d). Mapa escala 1:250.000, Carta de Pendientes, Hoja de Catamayo. Instituto Geográfico Militar.

Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010e). Mapa escala 1:250.000, Carta de Pendientes, Hoja de Gonzanamá. Instituto Geográfico Militar.

Cisneros, R. (2003). Apuntes de la materia Riego y Drenaje. Universidad Autónoma de San Luis de Potosí. http://www.ingenieria.uaslp.mx/Documents/Apuntes/Riego

Comegna, V., & Vitale, C. (1993). Space-time analysis of water status in a volcanic Vesuvian soil. Geoderma, 60(1-4), 135-158. https://doi.org/10.1016/0016-7061(93)90023-E

Espinosa, J., & Rivera, D. (2016). Variations in water resources availability at the Ecuadorian páramo due to land-use changes. Environmental Earth Sciences, 75(16), 1-15. https://doi.org/10.1007/s12665-016-5962-1

Gavin, K., & Xue, J. (2008). A simple method to analyze infiltration into unsaturated soil slopes. Computers and Geotechnics, 35(2), 223-230. https://doi.org/10.1016/J.COMPGEO.2007.04.002

Genuchten, M. Th. van. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/SSSAJ1980.03615995004400050002X

Guatibonza, M., Álvarez-Herrera, J. G., & Sanabria, J. E. (2009). Distribución espacial de la conductividad hidráulica en un lote de la granja Tunguavita (Paipa, Colombia). Agronomía Colombiana, 27(2), 261-271. https://revistas.unal.edu.co/index.php/agrocol/article/view/11208

Haverkamp, R., Parlange, J. -Y., Starr, J. L., Schmitz, G., & Fuentes, C. (1990). Infiltration under ponded conditions: 3. A predictive equation based on physical parameters. Soil Science, 149(5), 292-300. https://doi.org/10.1097/00010694-199005000-00006

Hincapié Gómez, E., & Tobón Marín, C. (2012). Dinámica del agua en andisoles bajo condiciones de ladera. Revista Facultad Nacional de Agronomía Medellín, 65(2). https://revistas.unal.edu.co/index.php/refame/article/view/36490

Instituto Nacional de Estadística y Censos [INEC]. (2000). Censo Nacional Agropecuario. INEC. https://www.ecuadorencifras.gob.ec/censo-nacional-agropecuario/

Kirkham, M. B. (2005). Principles of soil and plant water relations. Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-409751-3.X5000-2

Lal, R., & Taylor, G. S. (1970). Drainage and nutrient effects in a field lysimeter study: II. Mineral uptake by corn. Soil Science Society of America Journal, 34(2), 245-248. https://doi.org/10.2136/SSSAJ1970.03615995003400020020X

Li, M., Liu, T., Duan, L., Luo, Y., Ma, L., Zhang, J., Zhou, Y., & Chen, Z. (2019). The scale effect of double-ring infiltration and soil infiltration zoning in a semi-arid steppe. Water, 11(7), 1457. https://doi.org/10.3390/W11071457

Meijerink, A. M. J. (1988). Data acquisition and data capture through terrain mapping units. ITC JournaL, 7, 23-44.

Miyazaki, T. (1993). Water flow in soils. Marcel Dekker.

Moglen, G. E., Asce, F., Sadeq, H., Hughes Ii, L. H., Meadows, M. E., Miller, J. J., Asce, M., Ramirez-Avila, J. J., & Tollner, E. W. (2022). NRCS curve number method: comparison of methods for estimating the curve number from rainfall-runoff data. Journal of Hydrologic Engineering, 27(10), 04022023. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002210

Monsalve, G. (2006). Hidrología en la ingeniería (2nd ed.). Escuela Colombiana de Ingeniería.

Nelson, D. W., & Sommers, L. E. (2018). Total Carbon, Organic Carbon, and Organic Matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (eds.), Methods of Soil Analysis, Part 3: Chemical Methods (pp. 961-1010). SSSA Book Series. Science Society of America, Inc. https://doi.org/10.2136/sssabookser5.3.c34

Paz González, A., Thonon, I., Bertolani, F. C., Taboada Castro, M. M., Vidal-Vázquez, E., & Dafonte Dafonte, J. (2001). Variabilidad espacial de la infiltración en una ladera determinada con permeámetro de Guelph e infiltrómetro de tensión. En J. J. López Rodríguez, & M. Quemada (eds.), Temas de investigación en zona no saturada: actas de las V Jornadas sobre Investigación en la Zona no Saturada. Universidad Pública de Navarra = Nafarroako Unibertsitate Publikoa, Servicio de Publicaciones. https://abe.ufl.edu/faculty/carpena/files/pdf/zona_no_saturada/temas_de_investigacion_v5/12.pdf

Philip, J. R. (1991). Infiltration and downslope unsaturated flows in concave and convex topographies. Water Resources Research, 27(6), 1041-1048. https://doi.org/10.1029/91WR00129

Rawls, W. J., & Brakensiek, D. L. (1985). Prediction of soil water properties for hydrologic modeling. In E. B. Jones, & T. J. Ward (eds.) Watershed Management in the Eighties. Proc. of Symp. sponsored by Comm. on Watershed Management (pp. 293-299). ASCE. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0044472

Rawls, W. J., Brakensiek, D. L., & Miller, N. (1983). Greenampt Infiltration parameters from soils data. Journal of Hydraulic Engineering, 109(1), 62-70. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62)

Reynolds, W. D., Elrick, D. E., Youngs, E. G., Amoozegar, A., Booltink, H. W. G., & Bouma, J. (2002): Saturated and field-saturated water flow parameters. In J. H. Dane, & G. C. Topp (eds.), Methods of Soil Analysis, Part 4—Physical Methods (pp. 797-878). SSSA Book Series No. 5. Soil Science Society of America.

Ritsema, C. J., Oostindie, K., & Stolte, J. (1996). Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model. Hydrological Processes, 10(8), 1091-1105. https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1091::AID-HYP414>3.0.CO;2-J

Rodríguez Vidal, J. (1987). Aportación de la geomorfología aplicada a la ordenación del territorio y el medio ambiente en el occidente andaluz. Revista de Estudios Andaluces, (9), 41-54. https://doi.org/10.12795/rea.1987.i09.02

Romero Díaz, A., Quiñonero Rubio, J. M., López Martínez, M., & Ruiz Sinoga, J. D. (2010). Aplicación de técnicas SIG en el estudio de evaluación de degradación de suelos. Mazarrón (Murcia). In J. Ojeda, M. F. Pita, & I. Vallejo (eds.), Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos (pp. 1074-1089). Secretariado de Publicaciones de la Universidad de Sevilla. http://hdl.handle.net/11441/66694

Ruiz Sinoga, J. D., Lucas Santamaría, B., Romero Lopera, A., Noguera Robles, M. J., Gallegos Reina, A., Márquez Carrero, J. & Martínez Murillo, J. F. (2003). Determinación de la conductividad hidráulica en laderas mediante el uso de infiltrómetros de minidisco a lo largo de un gradiente pluviométrico mediterráneo. In J. Álvarez Benedí, & P. Marinero Díez (coord.), Estudios de la zona no saturada del suelo (pp. 143-152). Instituto Tecnológico Agrario de Castilla y León. https://dialnet.unirioja.es/servlet/articulo?codigo=4786431

Salton, J. C., & Mielniczuck, J. (1995). Relaciones entre sistemas de preparo, temperatura e umidade de um Podzólico Vermelho-Escuro de Eldorado do Sul (RS). Revista Brasileira de Ciência Do Solo, 19, 313-319.

Shukla, M. K., Lal, R., & Ebinger, M. (2003). Tillage effects on physical and hydrological properties of a typic argiaquoll in central Ohio. Soil Science, 168(11), 802-811. https://doi.org/10.1097/01.SS.0000100470.96182.4A

Sivapalan, M., & Wood, E. F. (1986). Spatial heterogeneity and scale in the infiltration response of catchments. In: V. K. Gupta, I. Rodríguez-Iturbe, & E. F. Wood, (eds.), Scale Problems in Hydrology. Water Science and Technology Library, vol 6. Springer. https://doi.org/10.1007/978-94-009-4678-1_5

Smettem, K. R. J., Parlange, J. Y., Ross, P. J., & Haverkamp, R. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-based theory. Water Resources Research, 30(11), 2925-2929. https://doi.org/10.1029/94WR01787

Tornés Oliveras, N., Gómez Masjuán, Y., & Boicet Fabre, T. (2013). Evaluación de la calidad del riego de la máquina con enrollador modelo IRROMOTOR. Revista Ciencias Técnicas Agropecuarias, 22(1), 39-44. https://rcta.unah.edu.cu/index.php/rcta/article/view/190

Varni, M., Gandini, M., Estraigas, I., & Vázquez, P. (2005). Propuesta y comparación de metodologías para la determinación y mapeo de áreas anegadas mediante el uso de imágenes Landsat. En Actas del XX Congreso Nacional del Agua CONAGUA. Mendoza.

Vereecken, H., Maes, J., Feyen, J., & Darius, P. (1989). Estimating the soil moisture retention characteristics from texture, bulk density, and carbon content. Soil Science, 148(6), 389-403. https://doi.org/10.1097/00010694-198912000-00001

Walkley, A. & Black, I. A. (1934). An examination of the degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003

Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. http://dx.doi.org/10.1097/00010694-194704000-00001

White, I., & Sully, M. J. (1987). Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resources Research, 23(8), 1514-1522. https://doi.org/10.1029/WR023I008P01514

Williams, R. D., Ahuja, L.R., & Naney, J. W. (1992). Comparison of methods to estimate soil water characteristics from limited texture, bulk density, and limited data. Soil Science, 153(3), 172-184. http://dx.doi.org/10.1097/00010694-199203000-00002

Wilson, G. V., & Luxmoore, R. J. (1988). Infiltration, macroporosity, and mesoporosity distributions on two forested watersheds. Soil Science Society of America Journal, 52(2), 329-335. https://doi.org/10.2136/SSSAJ1988.03615995005200020005X

Winckell, A., Marocco, R., Winter, T., Huttel, C., Pourrut, P., Zebrowski, C. & Sourdat, M. (1997). Los Paisajes naturales del Ecuador: Tomo IV – Geografía Física, Volumen 1 – Las condiciones generales del medio natural. Serie Geografía Básica del Ecuador. Centro Ecuatoriano de Investigación Geográfica. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/doc34-07/010022380.pdf

Winckell, A., Zebrowski, C. & Sourdat, M. (2000). Los Paisajes naturales del Ecuador: Tomo IV – Geografía Física, Volumen 2 – Las regiones y paisajes del Ecuador. Serie Geografía Básica del Ecuador. Centro Ecuatoriano de Investigación Geográfica. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010011845.pdf

Winckell, A., Zebrowski, C., & Delaune, M. (1991). Evolution du modèle quaternaire et des formations superficielles dans les Andes de l’Equateur : 2. Quelques aspects de l’histoire paléogéographique quaternaire. Géodynamique, 6(2), 119-139. https://www.documentation.ird.fr/hor/fdi:010011259

Zhang, R. (1997). Infiltration models for the disk infiltrometer. Soil Science Society of America Journal, 61(6), 1597-1603. https://doi.org/10.2136/SSSAJ1997.03615995006100060008X

Zhang, Y., Butters, G. L., Cardon, G. E., & Smith, R. E. (1999). Analysis and testing of a concentric-disk tension infiltrometer. Soil Science Society of America Journal, 63(3), 544-553. https://doi.org/10.2136/SSSAJ1999.03615995006300030017X

Zimmermann, E. D., & Basile, P. A. (2007). Funciones hidráulicas de suelos limosos: regresiones no lineales con propiedades físicas y granulométricas. En XXI Congreso Nacional del Agua. https://www.fceia.unr.edu.ar/curiham/es/wp-content/uploads/2018/11/con10-CNA071.pdf

Zimmermann, E. D., & Basile, P. A. (2008). Uso de funciones de pedotransferencia para la estimación de parámetros hidráulicos en suelos limosos (Llanura Argentina). Boletín Geológico y Minero, 119(1), 71-80. https://www.igme.es/boletin/2008/119_1_2008/ARTICULO%206.pdf

Zinck, J. A. (1988). Physiography and Soils. ITC Lecture Note SOL. 4.1. International Institute for Geoinformation Science and Earth Observation (ITC). https://webapps.itc.utwente.nl/librarywww/papers_1989/tech/zinck_phy.pdf

Most read articles by the same author(s)