Iron accumulations in banana agroecosystems (Milagro, Ecuador): A literature review of some factors involved in crop health and nutrition
Main Article Content
Abstract
This literature review describes from the agronomic point of view, the problems associated with Fe accumulation in banana agroecosystems. The objective of this research was to analyze the factors involved in the accumulation of large amounts of Fe in banana plantations, through the analysis of literature published on this subject in different databases, and the information was compared with foliar and soil analysis of a banana plantation located around Milagro, Ecuador. Results show several factors influencing the accumulation of Fe, which can be transported to the foliage, for which the type of soil is a determining factor together with the cultural practices that preserve the soil microbiome, being the drivers of siderophore metabolites that retain or metabolize heavy metals such as Fe. The results of foliar and soil analysis show nutritional imbalances caused by anthropogenic factors and a high bioaccumulation of Fe in the banana crop in the studied area. In conclusion, we can presently understand better the role of Fe in the banana plantation; however, more research on this element related to anthropogenic pressure and the type of plantation soil needs to be developed. In addition, it is important to explore the biotechnological opportunities that can be offered by siderophore microorganisms present in banana agroecosystems.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Álvarez-Fernández, A., & López-Millán, A. F. (2011). Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry, 49(5), 471-482. https://doi.org/10.1016/j.plaphy.2011.01.026 DOI: https://doi.org/10.1016/j.plaphy.2011.01.026
Aciksoz, S. B., Ozturk, L., Gokmen, O. O., Römheld, V., & Cakmak, I. (2011). Effect of nitrogen on root release of phytosiderophores and root uptake of Fe (III)‐phytosiderophore in Fe‐deficient wheat plants. Physiologia Plantarum, 142(3), 287-296. https://doi.org/10.1111/j.1399-3054.2011.01460.x DOI: https://doi.org/10.1111/j.1399-3054.2011.01460.x
Agrocalidad. (2015). Instructivo INT/SFA/ll. Muestreo para análisis de foliares. Rev. 2. Agrocalidad.
Aguado-Santacruz, G. A., Moreno-Gómez, B., Jiménez-Francisco, B., García-Moya, E., & Preciado-Ortiz, R. E. (2012). Impacto de los sideróforos microbianos y fitosidéforos en la asimilación de hierro por las plantas: una síntesis. Revista Fitotecnia Mexicana, 35(1), 9-21. DOI: https://doi.org/10.35196/rfm.2012.1.9
Aguirre Forero, S. E., Piraneque Gambasica, N. V., & Menjivar Flores, J. C. (2012). Relación entre las propiedades edafoclimáticas y la incidencia de sigatoka negra (Mycosphaerella fijiensis Morelet) en la zona bananera del Magdalena-Colombia. Revista de Investigación Agraria y Ambiental, 3(2), 13-25. https://doi.org/10.22490/21456453.970 DOI: https://doi.org/10.22490/21456453.970
Ailloud, F., Lowe, T. M., Robène, I., Cruveiller, S., Allen, C., & Prior, P. (2016). In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum. PeerJ, 4, e1549. https://doi.org/10.7717/peerj.1549 DOI: https://doi.org/10.7717/peerj.1549
Årstøl, E., & Hohmann-Marriott, M. F. (2019). Cyanobacterial Siderophores-Physiology, Structure, Biosynthesis, and Applications. Marine Drugs, 17(5), 281. https://doi.org/10.3390/md17050281 DOI: https://doi.org/10.3390/md17050281
Asghar, A. H., Shastri, S., Dave, E., Wowk, I., Agnoli, K., Cook, A. M., & Thomas, M. S. (2011). The pobA gene of Burkholderia cenocepacia encodes a group I Sfp-type phosphopantetheinyltransferase required for biosynthesis of the siderophores ornibactin and pyochelin. Microbiology, 157(2), 349-361. https://doi.org/10.1099/mic.0.045559-0 DOI: https://doi.org/10.1099/mic.0.045559-0
Aulakh, M. S., & Malhi, S. S. (2005). Interactions of nitrogen with other nutrients and water: effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution. Advances in Agronomy, 86, 341-409. https://doi.org/10.1016/S0065-2113(05)86007-9 DOI: https://doi.org/10.1016/S0065-2113(05)86007-9
Ayyadurai, N., Ravindra Naik, P., Sreehari Rao, M., Sunish Kumar, R., Samrat, S. K., Manohar, M., & Sakthivel, N. (2006). Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. Journal of Applied Microbiology, 100(5), 926-937. https://doi.org/10.1111/j.1365-2672.2006.02863.x DOI: https://doi.org/10.1111/j.1365-2672.2006.02863.x
Azuero Gaona, B. R., Quevedo Guerrero, J. N., & García Batista, R. M. (2020). Efecto del biocarbón y microorganismos en la producción y estado fitosanitario de banano orgánico en la parroquia “La Victoria”. Revista Científica Agroecosistemas, 8(2), 110-120. https://aes.ucf.edu.cu/index.php/aes/article/view/408
Baque Mite, R., Simba Ochoa, L., González Osorio, B., Suatunce, P., Diaz Ocampo, E., & Cadme Arevalo, L. (2016). Calidad del agua destinada al consumo humano en un cantón de Ecuador. CIENCIA UNEMI, 9(20), 109-117. https://doi.org/10.29076/issn.2528-7737vol9iss20.2016pp109-117p DOI: https://doi.org/10.29076/issn.2528-7737vol9iss20.2016pp109-117p
Bustamante León, M. B., Chabla-Carrillo, C. J., & Barrezueta-Unda, C. S. (2018). La densidad y humedad crítica como indicadores de la compactación de suelos cultivados con banano. Revista Científica Agroecosistemas, 6(1), 168-174. https://aes.ucf.edu.cu/index.php/aes/article/view/179
Caicedo Camposano, O., Balmaseda Espinosa, C., & Proaño Saraguro, J. (2015). Programación del riego del banano (Musa paradisiaca) en finca San José 2, Los Ríos, Ecuador. Revista Ciencias Técnicas Agropecuarias, 24(2), 18-22. https://revistas.unah.edu.cu/index.php/rcta/article/view/339
Chabla Carrillo, J., Vidal Vazquez, E., Barrezueta Unda, S., & Bustamante León, M. (2020). Determinación del intervalo Hídrico Optimo en un suelo Inceptisol bananero, bajo sistemas de riego. Revista Científica Agroecosistemas, 7(3), 38-44. https://aes.ucf.edu.cu/index.php/aes/article/view/313
Connorton, J. M., Balk, J., & Rodríguez-Celma, J. (2017). Iron homeostasis in plants–a brief overview. Metallomics, 9(7), 813-823. https://doi.org/10.1039/C7MT00136C DOI: https://doi.org/10.1039/C7MT00136C
de Deus, J. A. L., Neves, J. C. L., Corrêa, M. C. d. M., Parent, S. É., Natale, W., & Parent, L. E. (2018). Balance design for robust foliar nutrient diagnosis of “Prata” banana (Musa spp.). Scientific Reports, 8(1), 1-7. https://doi.org/10.1038/s41598-018-32328-y DOI: https://doi.org/10.1038/s41598-018-32328-y
De Serrano, L. O. (2017). Biotechnology of siderophores in high-impact scientific fields. Biomolecular concepts, 8(3-4), 169-178. https://doi.org/10.1515/bmc-2017-0016 DOI: https://doi.org/10.1515/bmc-2017-0016
De Serrano, L. O., Camper, A. K., & Richards, A. M. (2016). An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals, 29(4), 551-571. https://doi.org/10.1007/s10534-016-9949-x DOI: https://doi.org/10.1007/s10534-016-9949-x
Dens, K. R., Romero, R. A., Swennen, R., & Turner, D. W. (2008). Removal of bunch, leaves, or pseudostem alone, or in combination, influences growth and bunch weight of ratoon crops in two banana cultivars. The Journal of Horticultural Science and Biotechnology, 83(1), 113-119. https://doi.org/10.1080/14620316.2008.11512355 DOI: https://doi.org/10.1080/14620316.2008.11512355
Dong, X., Wang, M., Ling, N., Shen, Q., & Guo, S. (2016). Effects of iron and boron combinations on the suppression of Fusarium wilt in banana. Scientific Reports, 6, 38944. https://doi.org/10.1038/srep38944 DOI: https://doi.org/10.1038/srep38944
El-Amier, Y. A., Alghanem, S. M., & Alzuaibr, F. M. (2017). Bioaccumulation and translocation of heavy metals from coastal soil by wild halophytes. American Journal of Environmental Protection, 5(2), 52-60. https://doi.org/10.12691/env-5-2-4 DOI: https://doi.org/10.12691/env-5-2-4
Emri, T., Tóth, V., Nagy, C. T., Nagy, G., Pócsi, I., Gyémánt, G., Antal K., Balla, J., Balla, G., Román, G., Kovács, I., Pócsi, I. (2013). Towards high‐siderophore‐content foods: optimisation of coprogen production in submerged cultures of Penicillium nalgiovense. Journal of the Science of Food and Agriculture, 93(9), 2221-2228. https://doi.org/10.1002/jsfa.6029 DOI: https://doi.org/10.1002/jsfa.6029
Eras Márquez, R. Y. (2020). Estimación de las relaciones espaciales entre la conductividad hidráulica y las propiedades físicas del suelo en el cultivo de banano. Universidad Técnica de Machala.
Espinosa, J., & Mite, F. (2008). Búsqueda de eficiencia en el uso de nutrientes en banano. International Plant Nutrition Institute. XVIII Congreso ACORBAT. Guayaquil, Ecuador.
Forster, M. P., Rodríguez Rodríguez, E., Martín, J. D., & Díaz Romero, C. (2002). Statistical differentiation of bananas according to their mineral composition. Journal of Agricultural and Food Chemistry, 50(21), 6130-6135. https://doi.org/10.1021/jf0255578 DOI: https://doi.org/10.1021/jf0255578
García Batista, R. M., Quevedo Guerrero, J. N., & Socorro Castro, A. R. (2020). Prácticas para el aprovechamiento de residuos sólidos en plantaciones bananeras y resultados de su implementación. Universidad y Sociedad, 12(1), 280-291. https://rus.ucf.edu.cu/index.php/rus/article/view/1454
Gbongue, L. -R., Lalaymia, I., Zeze, A., Delvaux, B., & Declerck, S. (2019). Increased silicon acquisition in bananas colonized by Rhizophagus irregularis MUCL 41833 reduces the incidence of Pseudocercospora fijiensis. Frontiers in Plant Science, 9, 1977. https://doi.org/10.3389/fpls.2018.01977 DOI: https://doi.org/10.3389/fpls.2018.01977
Ghosh, P. K., Wanjari, R. H., Mandal, K. G., Hati, K. M., & Bandyopadhyay, K. K. (2002). Recent trends in inter-relationship of nutrients with various agronomic practices of field crops in India. Journal of Sustainable Agriculture, 21(1), 47-77. https://doi.org/10.1300/J064v21n01_06 DOI: https://doi.org/10.1300/J064v21n01_06
González Cueto, O., Iglesias Coronel, C. E., & Herrera Suárez, M. (2009). Análisis de los factores que provocan compactación del suelo agrícola. Revista Ciencias Técnicas Agropecuarias, 18(2),57-63.
Grillet, L., & Schmidt, W. (2017). The multiple facets of root iron reduction. Journal of Experimental Botany, 68(18), 5021-5027. https://doi.org/10.1093/jxb/erx320 DOI: https://doi.org/10.1093/jxb/erx320
Hedrich, S., Schlömann, M., & Johnson, D. B. (2011). The iron-oxidizing proteobacteria. Microbiology, 157(6), 1551-1564. https://doi.org/10.1099/mic.0.045344-0 DOI: https://doi.org/10.1099/mic.0.045344-0
Herlihy, J. H., Long, T. A., & McDowell, J. M. (2020). Iron homeostasis and plant immune responses: Recent insights and translational implications. Journal of Biological Chemistry, 295(39), 13444-13457. https://doi.org/10.1074/jbc.REV120.010856 DOI: https://doi.org/10.1074/jbc.REV120.010856
Hernández-Rodríguez, A., Rives-Rodríguez, N., Acebo-Guerrero, Y., Díaz-de la Osa, A., Heydrich-Pérez, M., & Divan Baldani, V. L. (2014). Potencialidades de las bacterias diazotróficas asociativas en la promoción del crecimiento vegetal y el control de Pyricularia oryzae (Sacc.) en el cultivo del arroz (Oryza sativa L.). Revista de Protección Vegetal, 29(1), 1-10.
Honda, M. D. H., & Borthakur, D. (2020). Mimosine facilitates metallic cation uptake by plants through formation of mimosine–cation complexes. Plant Molecular Biology, 102(4), 431-445. https://doi.org/10.1007/s11103-019-00956-1 DOI: https://doi.org/10.1007/s11103-019-00956-1
Hördt, W., Römheld, V., & Winkelmann, G. (2000). Fusarinines and dimerum acid, mono-and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Biometals, 13, 37-46. https://doi.org/10.1023/A:1009234612486 DOI: https://doi.org/10.1023/A:1009234612486
Howard, D. H., Rafie, R., Tiwari, A., & Faull, K. F. (2000). Hydroxamate siderophores of Histoplasma capsulatum. Infection and Immunity, 68(4), 2338-2343. https://doi.org/10.1128/IAI.68.4.2338-2343.2000 DOI: https://doi.org/10.1128/IAI.68.4.2338-2343.2000
Huang, C., Liu, S., Li, R., Sun, F., Zhou, Y., & Yu, G. (2016). Spectroscopic evidence of the improvement of reactive iron mineral content in red soil by long-term application of swine manure. PloS One, 11(1), e0146364. https://doi.org/10.1371/journal.pone.0146364 DOI: https://doi.org/10.1371/journal.pone.0146364
Instituto Nacional de Investigaciones Agropecuarias [INIAP], (2013). Servicio de diagnóstico de problemas fitosanitarios para el sector agrícola del país. Plegable No. 271. INIAP, Estación Experimental Litoral Sur “Dr. Enrique Ampuero Pareja”, Departamento Nacional Protección Vegetal.
Izquierdo, M., & Armas, M. (2018). Propuesta de un protocolo de fertilización como una estrategia para el control de nematodos en el cultivo de banano. Revista Científica Ciencias Naturales y Ambientales, 12(1), 31-42.
Karimian, N., Johnston, S. G., & Burton, E. D. (2018). Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere, 197, 803-816. https://doi.org/10.1016/j.chemosphere.2018.01.096 DOI: https://doi.org/10.1016/j.chemosphere.2018.01.096
Kesaulya, H., Hasinu, J. V., & Tuhumury, G. NC. (2018). Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants. IOP Conference Series: Earth and Environmental Science, 102, 012016. https://doi.org/10.1088/1755-1315/102/1/012016 DOI: https://doi.org/10.1088/1755-1315/102/1/012016
Khatua, C., Sengupta, S., Balla, V. K., Kundu, B., Chakraborti, A., & Tripathi, S. (2018). Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Management, 79, 287-295. https://doi.org/10.1016/j.wasman.2018.07.043 DOI: https://doi.org/10.1016/j.wasman.2018.07.043
Kramer, J., Özkaya, Ö., & Kümmerli, R. (2019). Bacterial siderophores in community and host interactions. Nature Reviews Microbiology, 18, 152-163. https://doi.org/10.1038/s41579-019-0284-4 DOI: https://doi.org/10.1038/s41579-019-0284-4
Kumar, A., Mylapilli, S. P., & Reddy, S. N. (2019). Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa acuminate). Bioresource Technology, 285, 121318. https://doi.org/10.1016/j.biortech.2019.121318 DOI: https://doi.org/10.1016/j.biortech.2019.121318
Kumar, G. B. S., Srinivas, L., Ganapathi, T. R. (2011). Iron fortification of banana by the expression of soybean ferritin. Biological Trace Element Research, 142(2), 232-241. https://doi.org/10.1007/s12011-010-8754-6 DOI: https://doi.org/10.1007/s12011-010-8754-6
Lahav, E., & Turner, D. W. (1992). Fertilización de banano para rendimientos altos (2ª ed.). Boletín No 7, Instituto de la potasa y el fósforo.
López, A., & Espinoza, J. (1995). Manual de nutrición y fertilización del banano. Una visión práctica del manejo de la fertilización. International Plant Nutrition Institute.
Lora Silva, R. (2007). Contaminación por elementos menores y posibles soluciones. Revista U.D.C.A Actualidad & Divulgación Científica, 10(1), 5-20. https://doi.org/10.31910/rudca.v10.n1.2007.559 DOI: https://doi.org/10.31910/rudca.v10.n1.2007.559
Madaan, G., Gosal, S. K., Gosal, S. S., Saroa, G. S., & Gill, M. I. S. (2013). Effect of microbial inoculants on the growth and yield of micropropagated banana (Musa indica) cv. Grand Naine. The Journal of Horticultural Science and Biotechnology, 88(5), 643-649. https://doi.org/10.1080/14620316.2013.11513019 DOI: https://doi.org/10.1080/14620316.2013.11513019
Maldonado-Magaña, A., Favela-Torres, E., Rivera-Cabrera, F., & Volke-Sepulveda, T. L. (2011). Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant and Soil, 339(1), 377-389. https://doi.org/10.1007/s11104-010-0589-6 DOI: https://doi.org/10.1007/s11104-010-0589-6
Martínez, R. E., Smith, D. S., Pedersen, K., & Ferris, F. G. (2003). Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment. Environmental Science & Technology, 37(24), 5671-5677. https://doi.org/10.1021/es0342603 DOI: https://doi.org/10.1021/es0342603
Medina Domínguez, E. K. (2006). Estudios de suelos, nutrición y fertilización en varias zonas bananeras del Ecuador. X Congreso Ecuatoriano de la Ciencia del Suelo, Guayaquil, Ecuador.
Mukherjee, P. K., Hurley, J. F., Taylor, J. T., Puckhaber, L., Lehner, S., Druzhinina, I., Schumacher, R., & Kenerley, C. M. (2018). Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochemical and Biophysical Research Communications, 505(2), 606-611. https://doi.org/10.1016/j.bbrc.2018.09.170 DOI: https://doi.org/10.1016/j.bbrc.2018.09.170
Murata, Y., Itoh, Y., Iwashita, T., & Namba, K. (2015). Transgenic petunia with the iron (III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments. PLoS One, 10(3), e0120227. https://doi.org/10.1371/journal.pone.0120227 DOI: https://doi.org/10.1371/journal.pone.0120227
Nagata, T., Oobo, T., & Aozasa, O. (2013). Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants. Journal of Bioscience and Bioengineering, 115(6), 686-690. https://doi.org/10.1016/j.jbiosc.2012.12.018 DOI: https://doi.org/10.1016/j.jbiosc.2012.12.018
Olivares, B. O., Gómez, J. A., Landa, B. B., Rey, J. C., Lobo, D., & Navas, J. A. (2018) Análisis de la calidad de suelos tropicales sobre la productividad del banano en diferentes fincas de los estados de Aragua y Trujillo en Venezuela. Congreso Nacional de Medio Ambiente – CONAMA 2018. Madrid, España.
Oliveira, S. R., Menegário, A. A., & Arruda, M. A. Z. (2014). Evaluation of Fe uptake and translocation in transgenic and non-transgenic soybean plants using enriched stable 57Fe as a tracer. Metallomics, 6(10), 1832-1840. https://doi.org/10.1039/C4MT00162A DOI: https://doi.org/10.1039/C4MT00162A
Pardha-Saradhi, P., Yamal, G., Peddisetty, T., Sharmila, P., Singh, J., Nagarajan, R., & Rao, K. S. (2014). Plants fabricate Fe-nanocomplexes at root surface to counter and phytostabilize excess ionic Fe. Biometals, 27(1), 97-114. https://doi.org/10.1007/s10534-013-9690-7 DOI: https://doi.org/10.1007/s10534-013-9690-7
Pérez-López, E. (2013). Análisis de fertilidad de suelos en el laboratorio de Química del Recinto de Grecia, Sede de Occidente, Universidad de Costa Rica. InterSedes, 14(29), 06-18. https://doi.org/10.15517/isucr.v14i29.13496 DOI: https://doi.org/10.15517/isucr.v14i29.13496
Phirke, N. V., Kothari, R. M., & Chincholkar, S. B. (2008). Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases. Applied Biochemistry and Biotechnology, 151(2-3), 441. https://doi.org/10.1007/s12010-008-8212-5 DOI: https://doi.org/10.1007/s12010-008-8212-5
Pi, H., & Helmann, J. D. (2017). Ferrous iron efflux systems in bacteria. Metallomics, 9(7), 840-851. https://doi.org/10.1039/C7MT00112F DOI: https://doi.org/10.1039/C7MT00112F
Raghupathi, H. B., Reddy, B. M. C., & Srinivas, K. (2002). Multivariate diagnosis of nutrient imbalance in banana. Communications in Soil Science and Plant Analysis, 33(13-14), 2131-2143. https://doi.org/10.1081/CSS-120005753 DOI: https://doi.org/10.1081/CSS-120005753
Rajendran, G., Mistry, S., Desai, A. J., & Archana, G. (2007). Functional expression of Escherichia coli fhuA gene in Rhizobium spp. of Cajanus cajan provides growth advantage in presence of Fe3+: ferrichrome as iron source. Archives of Microbiology, 187(4), 257. https://doi.org/10.1007/s00203-006-0191-8 DOI: https://doi.org/10.1007/s00203-006-0191-8
Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O., & Bindraban, P. S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis, 48(16), 1895-1920. https://doi.org/10.1080/00103624.2017.1407429 DOI: https://doi.org/10.1080/00103624.2017.1407429
Rodríguez, M., Rey, R., & Sarmiento, O. (2005). Influencia del riego por goteo superficial y subterráneo sobre la distribución radical del banano. Revista Ciencias Técnicas Agropecuarias, 14(2), 44-48.
Sahodaran, N. K., & Ray, J. G. (2018). Heavy metal contamination in “chemicalized” green revolution banana fields in southern India. Environmental Science and Pollution Research, 25(27), 26874-26886. https://doi.org/10.1007/s11356-018-2729-0 DOI: https://doi.org/10.1007/s11356-018-2729-0
Sancho, H., & Molina, E. (2016). Efecto de la concentración del H3O+ y Mg en el crecimiento inicial y la absorción de nutrimentos en plantas de banano cultivadas en solución hidropónica. Siembra, 3(1), 37-52. https://doi.org/10.29166/siembra.v3i1.257 DOI: https://doi.org/10.29166/siembra.v3i1.257
Santacruz de León, G., & Santacruz de León, E. E. (2020). Evaluación del desempeño del riego por aspersión en lotes con cultivo de banana en Chiapas, México. Siembra, 7(2), 001-013. https://doi.org/10.29166/siembra.v7i2.1712 DOI: https://doi.org/10.29166/siembra.v7i2.1712
Santos, M. S., Nogueira, M. A., & Hungria, M. (2019). Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9, 205. https://doi.org/10.1186/s13568-019-0932-0 DOI: https://doi.org/10.1186/s13568-019-0932-0
Serrano, E. (2005). Relationship between functional root content and banana yield in Costa Rica. In D. W. Turner y F. E. Rosales (eds.) Banana root system: towards a better understanding for its productive management. Proceedings of an International Symposium held in San José, Costa Rica on 3-5 November 2003 (pp. 25-34). International Network for the Improvement of Banana and Plantain [INIBAP].
Sulochana, M. B., Jayachandra, S. Y., Kumar, S. A., Parameshwar, A. B., Reddy, K. M., & Dayanand, A. (2014). Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Applied Biochemistry and Biotechnology, 174(1), 297-308. https://doi.org/10.1007/s12010-014-1039-3 DOI: https://doi.org/10.1007/s12010-014-1039-3
Sulu-Gambari, F., Seitaj, D., Meysman, F. J., Schauer, R., Polerecky, L., & Slomp, C. P. (2016). Cable bacteria control iron–phosphorus dynamics in sediments of a coastal hypoxic basin. Environmental Science & Technology, 50(3), 1227-1233. https://doi.org/10.1021/acs.est.5b04369 DOI: https://doi.org/10.1021/acs.est.5b04369
Tan, W., Yuan, Y., Zhao, X., Dang, Q., Yuan, Y., Li, R., Cui, D., & Xi, B. (2019). Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields. Science of the Total Environment, 676, 378-386. https://doi.org/10.1016/j.scitotenv.2019.04.288 DOI: https://doi.org/10.1016/j.scitotenv.2019.04.288
Tsai, H. H., & Schmidt, W. (2020). pH-dependent transcriptional profile changes in iron-deficient Arabidopsis roots. BMC genomics, 21, 694. https://doi.org/10.1186/s12864-020-07116-6 DOI: https://doi.org/10.1186/s12864-020-07116-6
Usuga Osorio, C. E., Castañeda Sánchez, D. A., Franco Molano, A. E., Gómez Velásquez, F. A., & Lopera Agudelo, C. A. (2008). Efecto de la micorrización y la fertilización en la acumulación de biomasa en plantas de banano (Musa AAA cv. Gran Enano) (Musaceae). Revista Facultad Nacional de Agronomía Medellín, 61(1), 4269-4278. https://revistas.unal.edu.co/index.php/refame/article/view/24726
Van Groeningen, N., ThomasArrigo, L. K., Byrne, J. M., Kappler, A., Christl, I., & Kretzschmar, R. (2020). Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. Environmental Science: Processes & Impacts 22, 1355-1367. https://doi.org/10.1039/D0EM00063A DOI: https://doi.org/10.1039/D0EM00063A
Vásquez-Castillo, W., Racines-Oliva, M., Moncayo, P., Viera, W., & Seraquive, M. (2019). Calidad del fruto y pérdidas poscosecha de banano orgánico Musa acuminata en el Ecuador. Enfoque UTE, 10(4), 57-66. https://doi.org/10.29019/enfoque.v10n4.545 DOI: https://doi.org/10.29019/enfoque.v10n4.545
Villa Guerrero, I. P. E., Chabla Carrillo, D. C. J. E., & Villaseñor Ortiz, M. D. R. (2018). Efecto de riegos presurizados sobre propiedades físicas de un suelo bananero asociado con Kudzu (Pueraria phaseoloides Benth). Revista Científica Agroecosistemas, 6(1), 34-45. https://aes.ucf.edu.cu/index.php/aes/article/view/162
Voß, B., Kirschhöfer, F., Brenner-Weiß, G., & Fischer, R. (2020). Alternaria alternata uses two siderophore systems for iron acquisition. Scientific Reports, 10(1), 3587. https://doi.org/10.1038/s41598-020-60468-7 DOI: https://doi.org/10.1038/s41598-020-60468-7
Wang, Z., Li, R., Cui, L., Fu, H., Lin, J., & Chen, J. (2018). Characterization and acid-mobilization study for typical iron-bearing clay mineral. Journal of Environmental Sciences, 71, 222-232. https://doi.org/10.1016/j.jes.2018.04.012 DOI: https://doi.org/10.1016/j.jes.2018.04.012
Yuan, C., Li, F., Cao, W., Yang, Z., Hu, M., & Sun, W. (2019). Cadmium solubility in paddy soil amended with organic matter, sulfate, and iron oxide in alternative watering conditions. Journal of Hazardous Materials, 378, 120672. https://doi.org/10.1016/j.jhazmat.2019.05.065 DOI: https://doi.org/10.1016/j.jhazmat.2019.05.065
Zielińska-Dawidziak, M. (2015). Plant ferritin—A source of iron to prevent its deficiency. Nutrients, 7(2), 1184-1201. https://doi.org/10.3390/nu7021184 DOI: https://doi.org/10.3390/nu7021184