Plant growth-promoting activity of four endophytic fungi isolated from Araucaria araucana
Main Article Content
Abstract
Endophytic fungi [EF] are microorganisms that reside within plant tissues without causing apparent damage. They play a role in synthesizing growth-regulating substances, nitrogen fixation, protection against pathogens, and other benefits for plants. In this study, we evaluated the capacity of Indole Acetic Acid [IAA] production and phosphate solubilization in four strains of EF isolated from roots of Araucaria Araucana, and assessed their effect on the growth promotion of Nicotiana tabacum, as a model plant. Fungi were identified as Phialocephala fortinii (strain E-1), Penicillium melinii (strain E-13), Umbelopsis dimorpha (strain E-14), and Preussia cymatomera (strain E-36). The concentration of IAA was determined using the Salkowski method using potato dextrose broth [PDB] supplemented with 10 mg L-1 L-tryptophan, as a precursor for IAA synthesis. The yield was expressed in mg L-1. The capacity of phosphate solubilization was determined in Pikovskaya solid medium through the evaluation of halos formed in the medium and calculating the relative solubilization efficiency ratio [RSE]. Finally, we evaluated the effect of EF in a co-culture with N. tabacum seedlings under in vitro conditions measuring aerial and root biomass of the seedlings. The highest values for IAA and RSE were observed in the case of U. dimorpha (52.29 and 3.36 mg L-1, respectively). All fungi used promoted the growth of both aerial and root biomass of N. tabacum plants under in vitro conditions, obtaining the highest production of total dry biomass (aerial and root) with U. dimorpha, with a value of 188.5 mg, which was significantly higher (p < 0,01) than that of control plants (8.85 mg). Our findings suggest that EF isolated from A. araucana has the potential to promote plant growth and provide benefits to plants through the production of phytohormones.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Adedayo, A. A., y Babalola, O. O. (2023). Fungi that promote plant growth in the rhizosphere boost crop growth. Journal of Fungi, 9(2), 239. https://doi.org/10.3390/jof9020239
Alarcón, J., Márquez, S., Teunisse, G., Mendoza, C., Meneses, C., Baldini, A., Parra, P., Zamora, P., Boehmwald, F., y Castro-Nallar, E. (2020). Sequences of Endophytic fungal and bacterial communities from Araucaria araucana [(Molina) K. Koch, 1869] in the coastal and Andes Mountain Ranges, Chile. Microbiology Resource Announcements, 9(27). https://doi.org/10.1128/MRA.00544-20
Al-Hosni, K., Shahzad, R., Latif Khan, A., Muhammad Imran, Q., al Harrasi, A., al Rawahi, A., Asaf, S., Kang, S.-M., Yun, B.-W., y Lee, I.-J. (2018). Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. Journal of Plant Interactions, 13(1), 112-118. https://doi.org/10.1080/17429145.2018.1432773
Andrade Ayala, M. del C. N., Hernandez Castillo, F. D., Laredo Alcala, E. I., Ledezma Pérez, A. S., Alvarado Canché, C. N., y Romero García, J. (2020). Efecto biológico de nanopartículas cargadas con ácido indolacético microbiano en parámetros morfométricos de tomate. Revista Mexicana de Ciencias Agrícolas, 11(3), 507-517. https://doi.org/10.29312/remexca.v11i3.1919
Arias Mota, R. M., Juárez González, A., Heredia Abarca, G., y de la Cruz Elizondo, Y. (2022). Capacidad fosfato solubilizadora de hongos rizosféricos provenientes de cafetales de Jilotepec, Veracruz. Alianzas y tendencias BUAP, 7(27), 69-86. https://doi.org/10.5281/zenodo.7094878
Arias, R. M., Heredia Abarca, G., del Carmen Perea Rojas, Y., de la Cruz Elizondo, Y., y García Guzman, K. Y. (2023). Selection and characterization of phosphate-solubilizing fungi and their effects on coffee plantations. Plants, 12(19), 3395. https://doi.org/10.3390/plants12193395
Arroyo Marín, M. J. (2023). Actividad promotora del crecimiento vegetal de especies de Morchella provenientes de bosque nativo y de plantaciones forestales del centro- sur de Chile. Universidad de Concepción. https://repositorio.udec.cl/handle/11594/10725
Báez-Pérez, A., González-Molina, L., Solís Moya, E., Bautista-Cruz, A., y Bernal-Alarcón, M. A. (2015). Efecto de la aplicación del ácido indol-3-butírico en la producción y calidad de trigo (Triticum aestivum L.). Revista Mexicana de Ciencias Agrícolas, 6(3), 523-537. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342015000300007&lng=es&tlng=es.x
Bamisile, B. S., Dash, C. K., Akutse, K. S., Keppanan, R., y Wang, L. (2018). Fungal endophytes: beyond herbivore management. Frontiers in Microbiology, 9, 544. https://doi.org/10.3389/fmicb.2018.00544
Card, S., Johnson, L., Teasdale, S., y Caradus, J. (2016). Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92(8), fiw114. https://doi.org/10.1093/femsec/fiw114
Chávez, D., Rivas, G., Machuca, Á., Santos, C., Deramond, C., Aroca, R., y Cornejo, P. (2023). Contribution of arbuscular mycorrhizal and endophytic fungi to drought tolerance in Araucaria araucana seedlings. Plants, 12(11), 2116. https://doi.org/10.3390/plants12112116
Collinge, D. B., Jensen, B., y Jørgensen, J. L. H. (2022). Fungal endophytes in plants and their relationship to plant disease. Current Opinion in Microbiology, 69, 102177. https://doi.org/10.1016/j.mib.2022.102177
Dovana, F., Mucciarelli, M., Mascarello, M., y Fusconi, A. (2015). In Vitro Morphogenesis of Arabidopsis to search for novel endophytic fungi modulating plant growth. PLOS ONE, 10(12), e0143353. https://doi.org/10.1371/journal.pone.0143353
Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., y Chou, J. Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling & Behavior, 10(8), e1048052. https://doi.org/10.1080/15592324.2015.1048052
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
Glickmann, E., y Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and environmental microbiology, 61(2), 793-796. https://doi.org/10.1128/aem.61.2.793-796.1995
Hajjam, Y. y Cherkaoui, S. (2017). The influence of phosphate solubilizing microorganisms on symbiotic nitrogen fixation: Perspectives for sustainable agriculture. Journal of Materials and Environmental Sciences, 8(3), 801-808. https://www.jmaterenvironsci.com/Journal/vol8-3.html
Hermann, T. M. (2006). Indigenous Knowledge and Management of Araucaria araucana forest in the Chilean Andes: Implications for Native Forest Conservation. Biodiversity and Conservation, 15, 647-662. https://doi.org/10.1007/s10531-005-2092-6
Hermosa, R., Viterbo, A., Chet, I., y Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17-25. https://doi.org/10.1099/mic.0.052274-0
Jahn, L., Hofmann, U., y Ludwig-Müller, J. (2021). Indole-3-acetic acid is synthesized by the endophyte Cyanodermella asteris via a Tryptophan- dependent and independent way and mediates the interaction with a non-host plant. International Journal of Molecular Sciences, 22(5), 2651. https://doi.org/10.3390/ijms22052651
Jones, D., Smith, B. F. L., Wilson, M. J., y Goodman, B. A. (1991). Phosphate solubilizing fungi in a Scottish upland soil. Mycological Research, 95(9), 1090-1093. https://doi.org/10.1016/S0953-7562(09)80553-4
Kaur, R., y Saxena, S. (2023). Penicillium citrinum, a drought-tolerant endophytic fungus isolated from wheat (Triticum aestivum L.) leaves with plant growth-promoting abilities. Current microbiology, 80(5), 184. https://doi.org/10.1007/s00284-023-03283-3
Kejela, T. (2024). Phytohormone-producing Rhizobacteria and their role in plant growth. En B. Ali y J. Iqbal (eds.), New insights into phytohormones. IntechOpen. https://doi.org/10.5772/intechopen.1002823
Kumar, V. V. (2016). Plant growth-promoting microorganisms: interaction with Plants and Soil. En K. Hakeem, M. Akhtar, y S. Abdullah (eds.), Plant, Soil and Microbes (pp. 1-10). Springer. https://doi.org/10.1007/978-3-319-27455-3_1
Le Cocq, K., Gurr, S. J., Hirsch, P. R., y Mauchline, T. H. (2017). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18(3), 469-473. https://doi.org/10.1111/mpp.12483
Mehmood, A., Hussain, A., Irshad, M., Hamayun, M., Iqbal, A., y Khan, N. (2019). In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis, 77, 225-235. https://doi.org/10.1007/s13199-018-0583-y
Mikheev, V. S., Struchkova, I. v., Ageyeva, M. N., Brilkina, A. A., y Berezina, E. v. (2022). The role of Phialocephala fortinii in improving plants’ phosphorus nutrition: New puzzle pieces. Journal of Fungi, 8(11), 1225. https://doi.org/10.3390/jof8111225
Mogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H., y Bouwman, A. F. (2018). Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change, 50, 149-163. https://doi.org/10.1016/J.GLOENVCHA.2018.03.007
Morales, A., Alvear, M., Valenzuela, E., Castillo, C. E., y Borie, F. (2011). Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertiliser. Journal of Soil Science and Plant Nutrition, 11(4), 89-103. https://dx.doi.org/10.4067/S0718-95162011000400007
Morocho, M. T., y Leiva-Mora, M. (2019). Microorganismos eficientes, propiedades funcionales y aplicaciones agrícolas. Centro Agrícola, 46(2), 93-103. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852019000200093
Naureen, A., Nasim, F. H., Choudhary, M. S., Ashraf, M., Grundler, F. M. W., y Schleker, A. S. S. (2022). A new endophytic fungus CJAN1179 isolated from the Cholistan desert promotes lateral root growth in Arabidopsis and produces IAA through tryptophan-dependent pathway. Archives of Microbiology, 204(3), 181. https://doi.org/10.1007/s00203-022-02768-2
Ortega, H. E., Torres-Mendoza, D., y Cubilla-Ríos, L. (2020). Patents on endophytic fungi for agriculture and bio- and phytoremediation applications. Microorganisms, 8(8), 1237. https://doi.org/10.3390/microorganisms8081237
Ortuño, N, Miranda, C., y Claros, M. (2013). Selección de cepas de Trichoderma spp. generadoras de metabolitos secundarios de interés para su uso como promotor de crecimiento en plantas cultivadas. Journal of the Selva Andina Biosphere, 1(1), 16-24. https://sars.org.bo/index.php/jsab/article/view/134/173
Park, K.-H., Lee, C.-Y., y Son, H.-J. (2009). Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Letters in Applied Microbiology, 49(2), 222–228. https://doi.org/10.1111/j.1472-765X.2009.02642.x
Parra Martínez, S. (2023). Microbiología del vermicompost. Universidad de los Andes. http://hdl.handle.net/1992/64905
Pascale, A., Proietti, S., Pantelides, I. S., y Stringlis, I. A. (2020). Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion. Frontiers in Plant Science, 10, 1741. https://doi.org/10.3389/fpls.2019.01741
Picone, L. I., y Zamuner, E. (2002). Fósforo orgánico y fertilidad fosfórica. Informaciones Agronómicas del Cono Sur, 16, 11-15. http://www.ipni.net/publication/ia-lacs.nsf/issue/IA-LACS-2002-4
Qin, D., Wang, L., Han, M., Wang, J., Song, H., Yan, X., Duan, X., y Dong, J. (2018). Effects of an endophytic fungus Umbelopsis dimorpha on the secondary metabolites of host-plant Kadsura angustifolia. Frontiers in Microbiology, 9, 2845. https://doi.org/10.3389/fmicb.2018.02845
Restrepo-Franco, G. M., Marulanda-Moreno, S., Fe-Pérez, Y. D. L., Díaz-de la Osa, A., Lucia-Baldani, V., y Hernández-Rodríguez, A. (2015). Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. Revista CENIC Ciencias Biológicas, 46(1), 63-76. https://revista.cnic.cu/index.php/RevBiol/article/view/95
Romero Fernández, A. de J., Arias Mota, R. M., y Mendoza Villarreal, R. (2018). Aislamiento y selección de hongos de suelo solubilizadores de fósforo nativos del estado de Coahuila, México. Acta Botánica Mexicana, (126), e1390. https://doi.org/10.21829/abm126.2019.1390
Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M., Naveed, M., Brtnicky, M., y Mustafa, A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19), 10529. https://doi.org/10.3390/ijms221910529
Sánchez-Fernández, R. E., Sánchez-Ortiz, B. L., Sandoval-Espinosa, Y. K. M., Ulloa-Benítez, Á., Armendáriz-Guillén, B., García-Méndez, M. C., y Macías- Rubalcava, M. L. (2013). Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP, Revista especializada en ciencias químico-biológicas, 16(2), 132-146. https://doi.org/10.1016/S1405-888X(13)72084-9
Sanchez-Gonzalez, Ma. E., Mora-Herrera, M. E., Wong-Villarreal, A., de La Portilla-López, N., Sanchez-Paz, L., Lugo, J., Vaca-Paulín, R., del Aguila, P., y Yañez-Ocampo, G. (2022). Effect of pH and carbon source on phosphate solubilization by bacterial strains in Pikovskaya medium. Microorganisms, 11(1), 49. https://doi.org/10.3390/microorganisms11010049
Shahab, S., Ahmed, N., y Khan, N. S. (2009). Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. African Journal of Agricultural Research, 4(11), 1312-1316. https://academicjournals.org/journal/AJAR/article-full-text-pdf/BCF994938188.pdf
Silva Filho, G. N., y Vidor, C. (2000). Solubilização de fostatos por microrganismos na presença de fontes de carbono. Revista Brasileira de Ciência Do Solo, 24(2), 311–319.
Tarroum, M., Romdhane, W. ben, Al-Qurainy, F., Ali, A. A. M., Al-Doss, A., Fki, L., y Hassairi, A. (2022). A novel PGPF Penicillium olsonii isolated from the rhizosphere of Aeluropus littoralis promotes plant growth, enhances salt stress tolerance, and reduces chemical fertilizers inputs in hydroponic system. Frontiers in Microbiology, 13, 996054. https://doi.org/10.3389/fmicb.2022.996054
Vilariño-Rodríguez, S. (2022). Avances en la producción de metabolitos secundarios de interés farmacológico a partir de material vegetal de Stevia rebaudiana, Bert. Universidad de Sevilla. https://idus.us.es/handle/11441/142948
Whitelaw, M. A. (1999). Growth Promotion of plants inoculated with phosphate-solubilizing fungi. Advances in Agronomy, 69, 99-151. https://doi.org/10.1016/S0065-2113(08)60948-7
Xu, C. (2014). Umbelopsis dimorpha and application of Umbelopsis dimorpha in promoting growth and improving drought resistance of Dendrobium officinale (Patente de China, N.° CN104195054A). https://patents.google.com/patent/CN104195054A/en