Trichoderma spp. and their influence on the resilience of plantain plants to Ralstonia solanacearum (Smith) phylotype II

Main Article Content

Pedro Isaías Terrero Yépez
Nicole Factos
Paola Rodulfo
Karina Solis
Carlos Molina
Karen Rafaela Mayorga

Abstract

Ralstonia solanacearum Smith, the causal agent of bacterial moko, represents one of the main phytosanitary threats to Musaceae crops due to its high aggressiveness and wide distribution. To evaluate biological management strategies, the effect of Trichoderma spp. strains on disease severity and agronomic development of plantain plants (Musa AAB) obtained by tissue culture technique and inoculated with R. solanacearum was determined. The experiment was established under a completely randomized design with nine treatments, including a non-inoculated control (T8) and a control inoculated only with the pathogen (T9). Results showed that T6 (T. lentiforme F19) and T2 (T. harzianum F73) significantly reduced disease severity (p < 0.0001). Additionally, T6, T5 (T. lixii F17), and T4 (T. afroharzianum F78) promoted plant growth, with significant increases in plant height and pseudo-stem diameter. No significant differences were observed in leaf number (p > 0.05). These results confirm the potential of Trichoderma spp. as biocontrol agent and biostimulant in Musaceae, constituting a viable alternative within integrated management strategies for the mitigation of R. solanacearum in plantain crops.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Terrero Yépez, P. I., Factos, N., Rodulfo, P., Solis, K., Molina, C., & Mayorga, K. R. (2025). Trichoderma spp. and their influence on the resilience of plantain plants to Ralstonia solanacearum (Smith) phylotype II. Siembra, 12(1), e7943. https://doi.org/10.29166/siembra.v12i1.7943
Section
Dossier: Banana Production, Challenges, and Opportunities
Author Biographies

Pedro Isaías Terrero Yépez, Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Tropical Pichilingue. Km 5 vía Quevedo - El Empalme. Mocache, Los Ríos, Ecuador

https://orcid.org/0000-0002-4492-4577

Nicole Factos, Investigadora independiente. Calle Q final. Los Ríos, Ecuador

https://orcid.org/0000-0002-1484-2669

Paola Rodulfo, Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Tropical Pichilingue. Km 5 vía Quevedo - El Empalme. Mocache, Los Ríos, Ecuador

https://orcid.org/0009-0007-4697-2752

Karina Solis, Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Tropical Pichilingue. Km 5 vía Quevedo - El Empalme. Mocache, Los Ríos, Ecuador

https://orcid.org/0000-0002-2696-4540  

Carlos Molina, Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Tropical Pichilingue. Km 5 vía Quevedo - El Empalme. Mocache, Los Ríos, Ecuador

https://orcid.org/0000-0002-4980-2667

Karen Rafaela Mayorga, Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Tropical Pichilingue. Km 5 vía Quevedo - El Empalme. Mocache, Los Ríos, Ecuador

https://orcid.org/0000-0003-2002-3122

References

Agrocalidad. (2013). Ralstonia solanacearum race 2 (Smith 1896) Yabuuchi et al. 1996. Agrocalidad https://www.agrocalidad.gob.ec/wp-content/uploads/2020/05/foc51.pdf

Ahmad, C. A., Akhter, A., Haider, M. S., Abbas, M. T., Hashem, A., Avila-Quezada, G. D., y Abd_Allah, E. F. (2024). Demonstration of the synergistic effect of biochar and Trichoderma harzianum on the development of Ralstonia solanacearum in eggplant. Frontiers in Microbiology, 15, 1360703. https://doi.org/10.3389/fmicb.2024.1360703 DOI: https://doi.org/10.3389/fmicb.2024.1360703

Bakar, R. A. H., Badrun, R., Ahmad, K., y Abu Bakar, N. (2018). Symptomatology and range of the blood disease bacterium A2 HR MARDI strain (Ralstonia syzygii subsp. celebensis) on selected hosts. IOSR Journal of Agriculture and Veterinary Science, 11(9), 71-77. http://psasir.upm.edu.my/id/eprint/74041

Clough, S. E., Elphinstone, J. G., y Friman, V.-P. (2024). Plant pathogenic bacterium Ralstonia solanacearum can rapidly evolve tolerance to antimicrobials produced by Pseudomonas biocontrol bacteria. Journal of Evolutionary Biology, 37(2), 225-237. https://doi.org/10.1093/jeb/voae002 DOI: https://doi.org/10.1093/jeb/voae002

Damodaran, T., Rajan, S., Muthukumar, M., Ram Gopal, Yadav, K., Kumar, S., Ahmad, I., Kumari, N., Mishra, V. K., & Jha, S. K. (2020). Biological management of banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 using antagonistic fungal isolate CSR-T-3 (Trichoderma reesei). Frontiers in Microbiology, 11, 595845. https://doi.org/10.3389/fmicb.2020.595845 DOI: https://doi.org/10.3389/fmicb.2020.595845

Delgado, R., Morillo, E., Buitrón, J., Bustamante, A., y Sotomayor, I. (2014). First report of Moko disease caused by Ralstonia solanacearum race 2 in plantain (Musa AAB) in Ecuador. New Disease Reports, 30(1), 23-23. https://doi.org/10.5197/j.2044-0588.2014.030.023 DOI: https://doi.org/10.5197/j.2044-0588.2014.030.023

García, R. O., Kerns, J. P., y Thiessen, L. (2019). Ralstonia solanacearum species complex: A quick diagnostic guide. Plant Health Progress, 20(1), 7-13. https://doi.org/10.1094/PHP-04-18-0015-DG DOI: https://doi.org/10.1094/PHP-04-18-0015-DG

Gómez-Calvo, E. A., Álvarez, E., y Llano, G. (2004). Identificación y caracterización de cepas de Ralstonia solanacearum raza 2, agente causante del moko de plátano en Colombia. Fitopatología Colombiana, 28(2), 71-75. http://ciat-library.ciat.cgiar.org/articulos_ciat/cepas_ralstonia_Moko%20_2.pdf

Goszczynska, T., Serfontein, J. J., y Serfontein, S. (comps.). (2000). Introduction to practical phytobacteriology: A manual for phytobacteriology. SAFRINET. https://ipmil.cired.vt.edu/wp-content/uploads/2014/06/Practical-Bacteriology-Guide-copy.pdf

InfoStat. (2020). InfoStat versión 2020. https://www.infostat.com.ar/index.php

López-Alvarez, D., Leiva, A. M., Barrantes, I., Pardo, J. M., Dominguez, V., y Cuellar, W. J. (2020). Complete genome sequence of the plant pathogen Ralstonia solanacearum strain CIAT-078, isolated in Colombia, obtained using Oxford Nanopore Technology. Microbiology Resource Announcements, 9(22), e00448-20. https://doi.org/10.1128/MRA.00448-20 DOI: https://doi.org/10.1128/MRA.00448-20

Manzar, N., Kashyap, A. S., Goutam, R. S., Rajawat, M. V. S., Sharma, P. K., Sharma, S. K., y Singh, H. V. (2022). Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustainability, 14(19), 12786. https://doi.org/10.3390/su141912786 DOI: https://doi.org/10.3390/su141912786

Mendoza Saltos, M. (2023). Ecuador, primer exportador de plátano fresco en el mundo. Forbes Ecuador. https://www.forbes.com.ec/negocios/ecuador-primer-exportador-platano-fresco-mundo-n64259

Pardo, J. M., López-Alvarez, D., Ceballos, G., Alvarez, E., y Cuellar, W. J. (2019). Detection of Ralstonia solanacearum phylotype II, race 2 causing Moko disease and validation of genetic resistance observed in the hybrid plantain FHIA-21. Tropical Plant Pathology, 44(4), 371-379. https://doi.org/10.1007/s40858-019-00282-3 DOI: https://doi.org/10.1007/s40858-019-00282-3

Ramos Martínez, L. M. (2006). Efecto de hongos endofíticos sobre promoción de crecimiento in vitro plantas de banano y piña. Escuela Agrícola Panamericana Zamorano. https://bdigital.zamorano.edu/handle/11036/932

Ramírez-Valdespino, C. A., Casas-Flores, S., y Olmedo-Monfil, V. (2019). Trichoderma as a model to study effector-like molecules. Frontiers in Microbiology, 10, 1030. https://doi.org/10.3389/fmicb.2019.01030 DOI: https://doi.org/10.3389/fmicb.2019.01030

Sharma, A., Salwan, R., Kaur, R., Sharma, R., y Sharma, V. (2022). Characterization and evaluation of bioformulation from antagonistic and flower inducing Trichoderma asperellum isolate UCRD5. Biocatalysis and Agricultural Biotechnology, 43, 102437. https://doi.org/10.1016/j.bcab.2022.102437 DOI: https://doi.org/10.1016/j.bcab.2022.102437

Shashitu, A. (2021). Evaluation of the efficacy of Trichoderma and Pseudomonas species against bacterial wilt Ralstonia isolates of tomato (Lycopersicum species). African Journal of Microbiology Research, 15(5), 262-271. https://doi.org/10.5897/AJMR2021.9523 DOI: https://doi.org/10.5897/AJMR2021.9523

Sistema de Información Pública Agropecuaria del Ecuador [SIPA]. (2017). Boletín Situacional de banano. https://sipa.agricultura.gob.ec/index.php/situacionales-agricolas/situacional-banano

Sun, Y., Su, Y., Meng, Z., Zhang, J., Zheng, L., Miao, S., Qin, D., Ruan, Y., Wu, Y., Xiong, L., Yan, X., Dong, Z., Cheng, P., Shao, M., y Yu, G. (2023). Biocontrol of bacterial wilt disease in tomato using Bacillus subtilis strain R31. Frontiers in Microbiology, 14, 1281381. https://doi.org/10.3389/fmicb.2023.1281381 DOI: https://doi.org/10.3389/fmicb.2023.1281381

Yan, L., y Khan, R. A. A. (2021). Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus, Trichoderma harzianum. Egyptian Journal of Biological Pest Control, 31(1), 5. https://doi.org/10.1186/s41938-020-00351-9 DOI: https://doi.org/10.1186/s41938-020-00351-9