Using microorganisms with different antagonism mechanisms to reduce the severity of Fusarium oxysporum f. sp. cubense race 1 in Gros Michel bananas

Main Article Content

Miguel Hoyos
Pedro Terrero

Abstract

Fusarium vascular wilt of Musaceae, caused by strains of Fusarium oxysporum f. sp. cubense [Foc], has only been effectively managed by using genetically resistant varieties. In addition to genetic resistance, crop management strategies that focus on soil health and maintain long-lasting resistance can also impact the intensity of the epidemic. This study evaluated the effects of applying biological control agents with different antagonistic mechanisms on components of the Fusarium epidemic in Musaceae under greenhouse conditions. The study used the Foc race 1 [R1]-Gros Michel banana pathosystem as a model. Experiments under controlled conditions revealed that applying biological control agents to Gros Michel banana plants before and after Fusarium inoculation results in varying degrees of pathogen damage to the plant. When the biological control agents were applied to contaminated soil before planting, the onset of symptoms and the severity of the damage caused by the pathogen were delayed due to competition and antibiosis. While none of the treatments prevented infection by the pathogen, they delayed the timing of symptoms and reduced severity of damage. Therefore, under optimal management conditions, microorganisms may have the potential to reduce disease severity, but field evaluations are needed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Hoyos, M., & Terrero, P. (2025). Using microorganisms with different antagonism mechanisms to reduce the severity of Fusarium oxysporum f. sp. cubense race 1 in Gros Michel bananas. Siembra, 12(2), e8195. https://doi.org/10.29166/siembra.v12i2.8195
Section
Original article
Author Biographies

Miguel Hoyos, Instituto Nacional de Investigaciones Agropecuarias. Estación Experimental Tropical Pichilingue, Departamento de Protección Vegetal. Km 5 Vía Quevedo – El Empalme. EC120313. Mocache, Los Ríos, Ecuador

https://orcid.org/0009-0001-6993-419X

Pedro Terrero, Instituto Nacional de Investigaciones Agropecuarias. Estación Experimental Tropical Pichilingue, Programa de Banano, Plátano y otras musáceas. Km 5 Vía Quevedo – El Empalme. EC120313. Mocache, Los Ríos, Ecuador

https://orcid.org/0000-0002-4492-4577

References

Avis, T. J., Gravel, V., Antoun, H., y Tweddell, R. J. (2008). Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, 40(7), 1733–1740. https://doi.org/10.1016/j.soilbio.2008.02.013 DOI: https://doi.org/10.1016/j.soilbio.2008.02.013

Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C., y Mercado-Blanco, J. (2019). Biological control agents against Fusarium wilt of banana. Frontiers in Microbiology, 10, 616 https://doi.org/10.3389/fmicb.2019.00616 DOI: https://doi.org/10.3389/fmicb.2019.00616

Castillo, A., Puig, C., y Cumagun, C. (2019). Non-synergistic effect of Trichoderma harzianum and Glomus spp. in reducing infection of Fusarium wilt in banana. Pathogens, 8(2), 43. https://doi.org/10.3390/pathogens8020043 DOI: https://doi.org/10.3390/pathogens8020043

Chaves, N. P., Staver, C., & Dita, M. A. (2016). Potential of Trichoderma asperellum for biocontrol of Fusarium wilt in banana. Acta Horticulturae, 1114, 261–266. https://doi.org/10.17660/ActaHortic.2016.1114.35 DOI: https://doi.org/10.17660/ActaHortic.2016.1114.35

Dadrasnia, A., Usman, M. M., Omar, R., Ismail, S., y Abdullah, R. (2020). Potential use of Bacillus genus to control of bananas diseases: Approaches toward high yield production and sustainable management. Journal of King Saud University - Science, 32(4), 2336–2342. https://doi.org/10.1016/j.jksus.2020.03.011 DOI: https://doi.org/10.1016/j.jksus.2020.03.011

Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., y Fierer, N. (2018). A global atlas of the dominant bacteria found in soil. Science, 359(6373), 320–325. https://doi.org/10.1126/science.aap9516 DOI: https://doi.org/10.1126/science.aap9516

Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., y Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9, 1468. https://doi.org/10.3389/fpls.2018.01468 DOI: https://doi.org/10.3389/fpls.2018.01468

Drenth, A., y Kema, G. (2021). The vulnerability of bananas to globally emerging disease threats. Phytopathology, 111(12), 2146–2161. https://doi.org/10.1094/PHYTO-07-20-0311-RVW DOI: https://doi.org/10.1094/PHYTO-07-20-0311-RVW

García-Bastidas, F. A., van der Veen, A. J. T., Nakasato-Tagami, G., Meijer, H. J. G., Arango-Isaza, R. E., y Kema, G. H. J. (2019). An improved phenotyping protocol for panama disease in banana. Frontiers in Plant Science, 10, 1006. https://doi.org/10.3389/fpls.2019.01006 DOI: https://doi.org/10.3389/fpls.2019.01006

García-Bastidas, F. (2022). Fusarium oxysporum f.sp. cubense tropical race 4 (Foc TR4). CABI Compendium, 59074053. https://doi.org/10.1079/cabicompendium.59074053 DOI: https://doi.org/10.1079/cabicompendium.59074053

García-Bastidas, F., Drenth, A., y Kema, G. H. J. (2024). The past, present and future of Fusarium wilt of banana caused by Tropical Race 4. En A. Drenth y G. H. J. Kema (eds.), Achieving sustainable cultivation of bananas Volume 3: Diseases and Pests (pp. 113–144). Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2022.0108.05 DOI: https://doi.org/10.19103/AS.2022.0108.05

Ghanbarzadeh, B., Safaie, N., y Goltapeh, E. M. (2014). Antagonistic activity and hyphal interactions of Trichoderma spp. against Fusarium proliferatum and F. oxysporum in vitro. Archives of Phytopathology and Plant Protection, 47(16), 1979–1987. https://doi.org/10.1080/03235408.2013.864506 DOI: https://doi.org/10.1080/03235408.2013.864506

Gomes, E. N., Elsherbiny, E. A., Aleem, B., y Bennett, J. W. (2020). Beyond classical biocontrol: new perspectives on Trichoderma. En A. E.-L.Hesham, R. S. Upadhyay, G. D.Sharma, C. Manoharachary, y V. K. Gupta (eds.), Fungal Biotechnology and Bioengineering. Fungal Biology (pp. 437–455). Springer Cham. https://doi.org/10.1007/978-3-030-41870-0_19 DOI: https://doi.org/10.1007/978-3-030-41870-0_19

Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil, V., y Herrera-Estrella, A. (2019). Trichoderma Species: Versatile plant symbionts. Phytopathology, 109(1), 6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW DOI: https://doi.org/10.1094/PHYTO-07-18-0218-RVW

Hernández-Melchor, D. J., Guerrero-Chávez, A. C., Ferrera-Rodríguez, M. R., Ferrera-Cerrato, R., Larsen, J., y Alarcón, A. (2023). Cellulase and chitinase activities and antagonism against Fusarium oxysporum f.sp. cubense race 1 of six Trichoderma strains isolated from Mexican maize cropping. Biotechnology Letters, 45(3), 387–400. https://doi.org/10.1007/s10529-022-03343-x DOI: https://doi.org/10.1007/s10529-022-03343-x

Huang, J., Pang, Y., Zhang, F., Huang, Q., Zhang, M., Tang, S., Fu, H., y Li, P. (2019). Suppression of Fusarium wilt of banana by combining acid soil ameliorant with biofertilizer made from Bacillus velezensis H-6. European Journal of Plant Pathology, 154(3), 585–596. https://doi.org/10.1007/s10658-019-01683-5 DOI: https://doi.org/10.1007/s10658-019-01683-5

Izquierdo-García, L. F., Carmona-Gutiérrez, S. L., Moreno-Velandia, C. A., Villarreal-Navarrete, A. del P., Burbano-David, D. M., Quiroga-Mateus, R. Y., Gómez-Marroquín, M. R., Rodríguez-Yzquierdo, G. A., y Betancourt-Vásquez, M. (2024). Microbial-based biofungicides mitigate the damage caused by Fusarium oxysporum f. sp. cubense race 1 and improve the physiological performance in banana. Journal of Fungi, 10(6), 419. https://doi.org/10.3390/jof10060419 DOI: https://doi.org/10.3390/jof10060419

Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., y Singh, H. B. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98(2), 533–544. https://doi.org/10.1007/s00253-013-5344-5 DOI: https://doi.org/10.1007/s00253-013-5344-5

Mayorga Morejón, K. R., Solis Hidalgo, Z. K., Terrero Yepez, P. I., y Hoyos Montesdeoca, M. A. (2024). Interacciones antagónicas entre Trichoderma spp. y Fusarium oxysporum f. sp. cubense R1: Un estudio in vitro sobre competencia y antibiosis. Pro Sciences: Revista de Producción, Ciencias e Investigación, 8(54), 12–23. https://doi.org/10.29018/issn.2588-1000vol8iss54.2024pp12-23

Mon, Y. Y., Bidabadi, S. S., Oo, K. S., y Zheng, S.-J. (2021). The antagonistic mechanism of rhizosphere microbes and endophytes on the interaction between banana and Fusarium oxysporum f. sp. cubense. Physiological and Molecular Plant Pathology, 116, 101733. https://doi.org/10.1016/j.pmpp.2021.101733 DOI: https://doi.org/10.1016/j.pmpp.2021.101733

Munhoz, T., Vargas, J., Teixeira, L., Staver, C., y Dita, M. (2024). Fusarium Tropical Race 4 in Latin America and the Caribbean: status and global research advances towards disease management. Frontiers in Plant Science, 15, 1397617 https://doi.org/10.3389/fpls.2024.1397617 DOI: https://doi.org/10.3389/fpls.2024.1397617

Nandhini, M., Udayashankar, A. C., Jogaiah, S., y Prakash, H. S. (2020). Unraveling the Potentials of Endophytes and Its Applications. En A. E.-L.Hesham, R. S. Upadhyay, G. D.Sharma, C. Manoharachary, y V. K. Gupta (eds.), Fungal Biotechnology and Bioengineering. Fungal Biology (pp. 331–348). Springer Cham. https://doi.org/10.1007/978-3-030-41870-0_14 DOI: https://doi.org/10.1007/978-3-030-41870-0_14

Nel, B., Steinberg, C., Labuschagne, N., y Viljoen, A. (2006). The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathology, 55(2), 217–223. https://doi.org/10.1111/j.1365-3059.2006.01344.x DOI: https://doi.org/10.1111/j.1365-3059.2006.01344.x

Parlevliet, J. E. (1993). What is Durable resistance, A general outline. En Th. Jacobs, y J. E. Parlevliet (eds.), Durability of disease resistance (pp. 23–39). Springer Netherland. https://doi.org/10.1007/978-94-011-2004-3_3 DOI: https://doi.org/10.1007/978-94-011-2004-3_3

Rajeswari, P. (2019). Combination of Trichoderma viride and Pseudomonas fluorescens for the enhanced control of Fusarium wilt disease caused by Fusarium oxysporum infecting Arachis hypogaea L. Journal of Applied and Natural Science, 11(1), 138–143. https://doi.org/10.31018/jans.v11i1.1985 DOI: https://doi.org/10.31018/jans.v11i1.1985

Rashad, Y. M., y Abdel-Azeem, A. M. (2020). Recent progress on Trichoderma secondary metabolites. En A. E.-L.Hesham, R. S. Upadhyay, G. D.Sharma, C. Manoharachary, y V. K. Gupta (eds.), Fungal Biotechnology and Bioengineering. Fungal Biology (pp. 281–303). Springer Cham. https://doi.org/10.1007/978-3-030-41870-0_12 DOI: https://doi.org/10.1007/978-3-030-41870-0_12

Ren, X., Zhou, Z., Liu, M., Shen, Z., Wang, B., Jousset, A., Geisen, S., Ravanbakhsh, M., Kowalchuk, G. A., Li, R., Shen, Q., y Xiong, W. (2024). Intercropping with Trifolium repens contributes disease suppression of banana Fusarium wilt by reshaping soil protistan communities. Agriculture, Ecosystems & Environment, 361, 108797. https://doi.org/10.1016/j.agee.2023.108797 DOI: https://doi.org/10.1016/j.agee.2023.108797

Román Jeri, C. H. (2012). Consideraciones epidemiológicas para el manejo de la marchitez por Fusarium (Fusarium oxysporum f. sp. cubense) del banano en la región central del Perú. Centro Agronómico Tropical de Investigación y Enseñanza [CATIE]. https://repositorio.catie.ac.cr/handle/11554/926

Shen, Z., Xue, C., Penton, C. R., Thomashow, L. S., Zhang, N., Wang, B., Ruan, Y., Li, R., y Shen, Q. (2019). Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biology and Biochemistry, 128, 164–174. https://doi.org/10.1016/j.soilbio.2018.10.016 DOI: https://doi.org/10.1016/j.soilbio.2018.10.016

Solórzano, R., Ramírez Maguiña, H. A., Johnson, L., Ureta Sierra, C., y Cruz, J. (2025). Current progress in microbial biocontrol of banana Fusarium wilt: A systematic review. Agronomy, 15(3), 619. https://doi.org/10.3390/agronomy15030619 DOI: https://doi.org/10.3390/agronomy15030619

Vieira, L. C. S., Costa, S. N., Borges, C. V., Gonçalves, Z. S., y Haddad, F. (2020). Fusarium oxysporum f. sp. cubense biocontrol mediated by Bacillus spp. in Prata-Anã banana. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences, 15(3), 1–7. https://doi.org/10.5039/agraria.v15i3a8030 DOI: https://doi.org/10.5039/agraria.v15i3a8030

Vijayasanthi, S., Akila, R., Ayyandurai, M., y Kannan, R. (2022). Survey, identification and management of Fusarium wilt of banana in Tamirabarani tract of Southern districts of Tamil Nadu. Journal of Biological Control, 36(1), 64–70. https://doi.org/10.18311/jbc/2022/30449 DOI: https://doi.org/10.18311/jbc/2022/30449

Villavicencio-Vásquez, M., Espinoza-Lozano, F., Espinoza-Lozano, L., y Coronel-León, J. (2025). Biological control agents: mechanisms of action, selection, formulation and challenges in agriculture. Frontiers in Agronomy, 7,.1578915. https://doi.org/10.3389/fagro.2025.1578915 DOI: https://doi.org/10.3389/fagro.2025.1578915

Viljoen, A., Mostert, D., Chiconela, T., Beukes, I., Fraser, C., Dwyer, J., Murray, H., Amisse, J., Matabuana, E. L., Tazan, G., Amugoli, O. M., Mondjana, A., Vaz, A., Pretorius, A., Bothma, S., Rose, L. J., Beed, F., Dusunceli, F., Chao, C.-P., y Molina, A. (2020). Occurrence and spread of the banana fungus Fusarium oxysporum f. sp. cubense TR4 in Mozambique. South African Journal of Science, 116(11/12), 8608. https://doi.org/10.17159/sajs.2020/8608 DOI: https://doi.org/10.17159/sajs.2020/8608

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., Woo, S. L., y Lorito, M. (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72(1–3), 80–86. https://doi.org/10.1016/j.pmpp.2008.05.005 DOI: https://doi.org/10.1016/j.pmpp.2008.05.005

Vinale, F., y Sivasithamparam, K. (2020). Beneficial effects of Trichoderma secondary metabolites on crops. Phytotherapy Research, 34(11), 2835–2842. https://doi.org/10.1002/ptr.6728 DOI: https://doi.org/10.1002/ptr.6728

Watanabe, T. (2002). Pictorial atlas of soil and seed fungi. CRC Press. https://doi.org/10.1201/9781420040821 DOI: https://doi.org/10.1201/9781420040821

Yadav, K., Damodaran, T., Dutt, K., Singh, A., Muthukumar, M., Rajan, S., Gopal, R., y Sharma, P. C. (2021). Effective biocontrol of banana Fusarium wilt tropical race 4 by a Bacillus rhizobacteria strain with antagonistic secondary metabolites. Rhizosphere, 18, 100341. https://doi.org/10.1016/j.rhisph.2021.100341 DOI: https://doi.org/10.1016/j.rhisph.2021.100341

Zadoks, J. C. (1993). The partial past: Comments on the history of thinking about resistance of plants against insects, nematodes, fungi, and other harmful agents. En Th. Jacobs, y J. E. Parlevliet (eds.), Durability of disease resistance (pp. 11–22). Springer Netherlands. https://doi.org/10.1007/978-94-011-2004-3_2 DOI: https://doi.org/10.1007/978-94-011-2004-3_2

Zheng, S.-J., Hu, H., Li, Y., Chen, J., Li, X., y Bai, T. (2024). Editorial: Microbial interaction with banana: mechanisms, symbiosis, and integrated diseases control. Frontiers in Microbiology, 15, 1390969.https://doi.org/10.3389/fmicb.2024.1390969 DOI: https://doi.org/10.3389/fmicb.2024.1390969