Synthesis and characterization of silver nanoparticles for use in dentistry
DOI:
https://doi.org/10.29166/odontologia.vol26.n2.2024-e6753Keywords:
oral health, synthesis, characterization, silver nanoparticles, antibacterialAbstract
The objective of this study was to report the synthesis and characterization of silver nanoparticles and to discuss their antimicrobial effect for application in dentistry. For the synthesis phase, 0.169 g of AgNO3 were dissolved in 100 mL of deionized water on a magnetic stirring platform, then 0.1 g of gallic acid previously dissolved in 10 mL of deionized water were added. After adding the gallic acid, the pH was adjusted with 0.1 M NaOH flake solution. For the characterization of the nanoparticles obtained, transmission electron microscopy and atomic force microscopy in AC mode were used. Analyzes for characterization were prepared using aqueous dispersions obtained from silver nanoparticles which were allowed to dry on a carbon-coated copper grid. In the synthesis carried out, gallic acid is used as a reducing and stabilizing agent, the oxidation reaction of the phenol groups in gallic acid was responsible for the reduction of silver ions. Through transmission electron microscopy, the presence of spherical silver nanoparticles with monodisperse sizes ranging from 5 nm to 13.4 nm was observed, that is, a homogeneous size was obtained from the synthesis. Finally, considering the ease of application and its potential bactericidal action, it is concluded that the spherical silver nanoparticles developed in this work have great potential to be used as auxiliaries in the treatment of oral diseases.
Downloads
References
Nicolae-Maranciuc A, Chicea D, Chicea LM. Ag Nanoparticles for Biomedical Applications-Synthesis and Characterization-A Review. Int J Mol Sci. 2022;23(10):5778. doi: 10.3390/ijms23105778.
Sartori P, Delamare APL, Machado G, Devine DM, Crespo JS, Giovanela M. Synthesis and Characterization of Silver Nanoparticles for the Preparation of Chitosan Pellets and Their Application in Industrial Wastewater Disinfection. Water. 2023; 15(1):190. Doi: 10.3390/w15010190
Pascu B, Negrea A, Ciopec M, Duteanu N, Negrea P, Bumm LA, et al. Silver Nanoparticle Synthesis via Photochemical Reduction with Sodium Citrate. Int J Mol Sci. 2022;24(1):255. doi: 10.3390/ijms24010255.
Dorjnamjin D, Ariunaa M, Shim YK. Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci. 2008;9(5):807-820. doi: 10.3390/ijms9050807.
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci. 2016;17(9):1534. doi: 10.3390/ijms17091534.
Pryshchepa O, Pomastowski P, Rafińska K, Gołębiowski A, Rogowska A, Monedeiro-Milanowski M, et al. Synthesis, Physicochemical Characterization, and Antibacterial Performance of Silver-Lactoferrin Complexes. Int J Mol Sci. 2022;23(13):7112. doi: 10.3390/ijms23137112.
Berman TS, Barnett-Itzhaki Z, Berman T, Marom E. Antimicrobial resistance in food-producing animals: towards implementing a one health based national action plan in Israel. Isr J Health Policy Res. 2023;12(1):18. doi: 10.1186/s13584-023-00562-z.
Dorgham RA, Abd Al Moaty MN, Chong KP, Elwakil BH. Molasses-Silver Nanoparticles: Synthesis, Optimization, Characterization, and Antibiofilm Activity. Int J Mol Sci. 2022 Sep 6;23(18):10243. doi: 10.3390/ijms231810243.
Naskar A, Kim KS. Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms. 2019;7(9):356. doi: 10.3390/microorganisms7090356.
Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater. 2018;7(13):e1701503. doi: 10.1002/adhm.201701503.
Reise M, Gottschaldt M, Matz C, Völpel A, Jandt KD, Schubert US, et al. Antibacterial effect of silver (I) carbohydrate complexes on oral pathogenic key species in vitro. BMC Oral Health. 2016;16:42. doi: 10.1186/s12903-016-0201-4.
Weir E, Lawlor A, Whelan A, Regan F. The use of nanoparticles in anti-microbial materials and their characterization. Analyst. 2008;133(7):835-45. doi: 10.1039/b715532h.
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine. 2020;15:2555-2562. doi: 10.2147/IJN.S246764.
Niska K, Knap N, Kędzia A, Jaskiewicz M, Kamysz W, Inkielewicz-Stepniak I. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice. Int J Med Sci. 2016;13(10):772-782. doi: 10.7150/ijms.16011.
Gnanadhas DP, Ben Thomas M, Thomas R, Raichur AM, Chakravortty D. Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother. 2013;57(10):4945-55. doi: 10.1128/AAC.00152-13.
Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules. 2019;24(6):1033. doi: 10.3390/molecules24061033.
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712-20. doi: 10.1128/AEM.02218-06.
Peiris MK, Gunasekara CP, Jayaweera PM, Arachchi ND, Fernando N. Biosynthesized silver nanoparticles: are they effective antimicrobials? Mem Inst Oswaldo Cruz. 2017;112(8):537-543. doi: 10.1590/0074-02760170023.
Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 2013;24(6):1465-71. doi: 10.1007/s10856-013-4894-5.
Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, et al. Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Lett Appl Microbiol. 2012;54(5):383-91. doi: 10.1111/j.1472-765X.2012.03219.x.
Holden MS, Black J, Lewis A, Boutrin MC, Walemba E, Sabir TS, et al. Antibacterial Activity of Partially Oxidized Ag/Au Nanoparticles against the Oral Pathogen Porphyromonas gingivalis W83. J Nanomater. 2016;2016:9605906. doi: 10.1155/2016/9605906.
Sámano-Valencia C, Martínez-Castañón GA, Martínez-Martínez RE, Loyola-Rodríguez JP, Reyes-Macías JF, Ortega-Zarzosa G, et al. Bactericide efficiency of a combination of chitosan gel with silver nanoparticles. Materials Letters, 2013;106(1):413–416. doi: 10.1016/j.matlet.2013.05.075
Espinosa-Cristóbal LF, Martínez-Castañón GA, Martínez-Martínez RE, Loyola-Rodríguez JP, Patiño-Marín N, Reyes-Macías JF, et al. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Materials Letters, 2009;63(29):2603–2606. doi: 10.1016/j.matlet.2009.09.018
Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 2008;10:1343–1348. doi:10.1007/s11051-008-9428-6
Hitchcock NM, Devequi Gomes Nunes D, Shiach J, Valeria Saraiva Hodel K, Dantas Viana Barbosa J, Alencar Pereira Rodrigues L, et al. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses. 2023;15(4):1020. doi: 10.3390/v15041020.
Wang W, Chen Q, Jiang C, Yang D, Liu X, Xu S. (). One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007;301(1-3), 73–79. doi: 10.1016/j.colsurfa.2006.12.037
Borja-Borja JM, Rojas-Oviedo BS. Nanomateriales: métodos de síntesis. Polo del Conocimiento, 2020;5(8):426-445.
Evanoff DD Jr, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem. 2005;6(7):1221-31. doi: 10.1002/cphc.200500113.
Zanella, R. Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 2012;5(1):69-81.
Monge M. Nanopartículas de plata: métodos de síntesis en disolución y propiedades bactericidas. Anales de Química. 2009;105(1):33-41.
Molina GF, Palma SD. Nanotecnología en Odontología: Aspectos generales y posibles aplicaciones. Methodo Investigación Aplicada a Las Ciencias Biológicas, 2018;3(3). Recuperado a partir de https://methodo.ucc.edu.ar/index.php/methodo/article/view/79
Abou Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC. Nanotechnology in dentistry: prevention, diagnosis, and therapy. Int J Nanomedicine. 2015;10:6371-94. doi: 10.2147/IJN.S86033.
Akram FE, El-Tayeb T, Abou-Aisha K, El-Azizi M. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Ann Clin Microbiol Antimicrob. 2016;15(1):48. doi: 10.1186/s12941-016-0164-y.
Mariel Murga H, Centeno Sanchez R, Sánchez Meraz W, González Amaro AM, Arredondo Hérnandez R, Mariel Cárdenas J, et al. Eficacia antimicrobiana del primer ortodóncico adicionado con nanopartículas de plata. Estudio transversal in vitro. Investigacion Clinica, 2016;57(4):321–329.
Kushwaha V, Yadav RK, Tikku AP, Chandra A, Verma P, Gupta P, et al. Comparative evaluation of antibacterial effect of nanoparticles and lasers against Endodontic Microbiota: An in vitro study. J Clin Exp Dent. 2018;10(12):e1155-e1160. doi: 10.4317/jced.55076.
Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai R. Antibacterial Efficacy of Biosynthesized Silver Nanoparticles against Enterococcus faecalis Biofilm: An in vitro Study. Contemp Clin Dent. 2018;9(2):237-241. doi: 10.4103/ccd.ccd_828_17.
Campos V, Almaguer-Flores A, Velasco-Aria D, Díaz D, Rodil S. E. Bismuth and silver nanoparticles as antimicrobial agent over subgingival bacterial and nosocomial strains. Journal of Materials Science and Engineering A, 2018;8(7-8):142-146.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ma. Elena Ponce-Díaz, Blanca Silvia González-López, Norma Leticia Robles-Bermeo, Carolina Sámano-Valencia, Adriana Patricia Rodríguez-Hernández, Carlo Eduardo Medina Solis
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.