Ácido fólico: requerimientos e importancia en cerdas y lechones

  • Jimmy Rolando Quisirumbay Gaibor Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador
Palabras clave: alimentación, nutrición, cerdos, vitaminas, ácido fólico

Resumen

El ácido fólico es una vitamina hidrosoluble perteneciente al grupo del complejo B, cuya importancia en el organismo está dada por su capacidad de transportar unidades de un carbono, para la síntesis de proteínas y ácidos nucleicos. Su deficiencia produce retraso en el desarrollo y anemia en animales en crecimiento, y en cerdas gestantes produce mal formaciones congénitas en sus crías. La suplementación dietaria de ácido fólico ha mostrado mejorar la eficiencia reproductiva y el rendimiento productivo en cerdos. En la actualidad hay varias guías nutricionales que publican los niveles sugeridos de ácido fólico en cerdas y lechones. El objetivo de la elaboración de esta revisión es proporcionar una fuente de información que presente de manera resumida y concreta la importancia del ácido fólico en la nutrición de cerdas y lechones permitiendo al nutricionista elaborar una dieta que incluya los niveles adecuados de esta vitamina. Los requerimientos de ácido fólico para cerdas están entre 1,3 a 5,5 mg/kg de alimento y para lechones el rango está entre 0,3 a 3 mg/kg. Debido a la variabilidad en el contenido de esta vitamina en los principales ingredientes usados en la alimentación porcina se hace necesaria su inclusión en el alimento a través de una pre-mezcla vitamínica.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abu-Amero, S., Monk, D., Apostolidou, S., Stanier, P., & Moore, G. (2006). Imprinted genes and their role in human fetal growth. Cytogenetic and Genome Research, 113(1-4), 262-270. https://doi.org/10.1159/000090841

Bailey, L. B., & Berry, R. J. (2005). Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriage. The American Journal of Clinical Nutrition, 81(5), 1213S-1217S. https://doi.org/10.1093/ajcn/81.5.1213

Bailey, L. B., & Gregory III, J. F. (1999). Folate metabolism and requirements. The Journal of Nutrition, 129(4), 779-782. https://doi.org/10.1093/jn/129.4.779

Boushey, C. J., Beresford, S. A., Omenn, G. S., & Motulsky, A. G. (1995). A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. Jama, 274(13), 1049-1057. https://doi:10.1001/jama.1995.03530130055028

Chang, C., Yu, C., Lu, H., Chou, Y., & Huang, R. (2007). Folate deprivation promotes mitochondrial oxidative decay: DNA large deletions, cytochrome c oxidase dysfunction, membrane depolarization and superoxide overproduction in rat liver. British Journal of Nutrition, 97(5), 855-863. https://doi.org/10.1017/S0007114507666410

Chen, Y. F., Huang, C. F., Liu, L., Lai, C. H., & Wang, F. L. (2019). Concentration of vitamins in the 13 feed ingredients commonly used in pig diets. Animal Feed Science and Technology, 247, 1-8. https://doi.org/10.1016/j.anifeedsci.2018.10.011

Chou, Y.-F., Yu, C.-C., & Huang, R.-F. S. (2007). Changes in Mitochondrial DNA Deletion, Content, and Biogenesis in Folate-Deficient Tissues of Young Rats Depend on Mitochondrial Folate and Oxidative DNA Injuries. The Journal of Nutrition, 137(9), 2036-2042. https://doi.org/10.1093/jn/137.9.2036

Church, D. C., Pond, K. R., & Pond, W. G. (2012). Fundamentos de Nutrición y Alimentación del Animal (Segunda edición ed.). México DF: Limusa.

Corassa , A., Lopes, D. C., Ostermann, J. D., Sanfelice, A. M., Teixeira, A. O., Silva, G. F., & Pena, S. M. (2006). Levels of folic acid in diets containing formic acid for piglets from 21 to 48 days old. Revista Brasileira de Zootecnia brazilian Journal of Animal Science, 35, 462-470. http://dx.doi.org/10.1590/S1516-35982006000200018

DSM. (2016). Guía de Suplementación Vitamínica para la nutrición animal. Obtenido de: https://www.dsm.com/markets/anh/en_US/products/products-vitamins/products-vitamins-ovn/swine.html

Fundación Española para el Desarrollo de la Nutrición Animal. (2013). Necesidades Nutricionales para Ganado Porcino: Normas FEDNA (Segunda Edición ed.). España: FEDNA.

Giguère, A., Girard, C. L., Lambert, R., Laforest, J. P., & Matte, J. J. (2000). Reproductive performance and uterine prostaglandin secretion in gilts conditioned with dead semen and receiving dietary supplements of folic acid. Canadian Journal of Animal Science, 80(3), 467-472. https://doi.org/10.4141/A99-107

Guay, F., Matte, J. J., Girard, C. L., Palin, M. F., Giguère, A., & Laforest, J. P. (2002a). Effect of folic acid and glycine supplementation on embryo development and folate metabolism during early pregnancy in pigs. Journal of Animal Science, 80(8), 2134-2143. https://doi.org/10.1093/ansci/80.8.2134

Guay, F., Matte, J. J., Girard, C. L., Palin, M. F., Giguere, A., & Laforest, J. P. (2002b). Effects of folic acid and vitamin B 12 supplements on folate and homocysteine metabolism in pigs during early pregnancy. British Journal of Nutrition, 88(3), 253-263. https://doi.org/10.1079/BJN2002653

Guay, F., Matte, J. J., Girard, C. L., Palin, M. F., Giguère, A., & Laforest, J. P. (2004a). Effects of folic acid supplement on uterine prostaglandin metabolism and interleukin-2 expression on day 15 of gestation in white breed and crossbred Meishan sows. Canadian Journal of Animal Science, 84(1), 63-72. https://doi.org/10.4141/A02-076

Guay, F., Matte, J. J., Girard, C. L., Palin, M. F., Giguère, A., & Laforest, J. P. (2004b). Effect of folic acid plus glycine supplement on uterine prostaglandin and endometrial granulocyte-macrophage colony-stimulating factor expression during early pregnancy in pigs. Theriogenology, 61(2-3), 485-498. https://doi.org/10.1016/S0093-691X(03)00213-9

Harper, A. F., Lindemann, M. D., Chiba, L. I., Combs, G. E., Handlin, D. L., Kornegay, E. T., & Southern, L. L. (1994). An assessment of dietary folic acid levels during gestation and lactation on reproductive and lactational performance of sows: a cooperative study. S-145 Committee on Nutritional Systems for Swine to Increase Reproductive Efficiency. Journal of animal science, 72(9), 2338-2344. https://doi.org/10.2527/1994.7292338x

Huang, R.-F. S., Hsu, Y.-C., Lin, H.-L., & Yang, F. L. (2001). Folate Depletion and Elevated Plasma Homocysteine Promote Oxidative Stress in Rat Livers. The Journal of Nutrition, 131(1), 33-38. https://doi.org/10.1093/jn/131.1.33

Johnston, R. B. (2009). Folic acid: preventive nutrition for preconception, the fetus, and the newborn. NeoReviews, 10(1), e10-e19.

Kruman, I. I., Kumaravel, T. S., Lohani, A., Pedersen, W. A., Cutler, R. G., Kruman, Y., & Mattson, M. P. (2002). Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. Journal of Neuroscience, 22(5), 1752-1762. https://doi.org/10.1523/JNEUROSCI.22-05-01752.2002

Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The International Journal of Biochemistry & Cell Biology, 37(4), 822-834. https://doi.org/10.1016/j.biocel.2004.09.010

Lindemann, M. D., & Kornegay, E. T. (1986). Folic acid additions to weanling pig diets. Journal of Animal Science, 63(Suppl. 1), 35.

Lindemann, M. D., & Kornegay, E. T. (1989). Folic Acid Supplementation to Diets of Gestating-Lactating Swine over Multiple Parities 1, 2. Journal of Animal Science, 67(2), 459-464.

Liu, J., Yao, Y., Yu, B., Mao, X., Huang, Z., & Chen, D. (2012). Effect of folic acid supplementation on hepatic antioxidant function and mitochondrial-related gene expression in weanling intrauterine growth retarded piglets. Livestock Science, 146(2-3), 123-132. https://doi.org/10.1016/j.livsci.2012.02.027

Matte, J. J., & Girard, C. L. (1999). An estimation of the requirement for folic acid in gestating sows: the metabolic utilization of folates as a criterion of measurement. Journal of Animal Science, 77(1), 159-165. https://doi.org/10.2527/1999.771159x

Matte, J. J., Farmer, C., Girard, C. L., & Laforest, J. P. (1996). Dietary folic acid, uterine function and early embryonic development in sows. Canadian Journal of Animal Science, 76(3), 427-433. https://doi.org/10.4141/cjas96-062

Matte, J. J., Girard, C. L., & Brisson, G. J. (1984). Folic acid and reproductive performances of sows. Journal of Animal Science, 59(4), 1020-1025. https://doi.org/10.2527/jas1984.5941020x

Matte, J. J., Guay, F., & Girard, C. L. (2006). Folic acid and vitamin B12 in reproducing sows: new concepts. Canadian Journal of Animal Science, 86(2), 197-205. https://doi.org/10.4141/A05-059

National Research Council. (2012). Nutrient requirements of swine. Washington, DC: National Academies Press.

Ogata, E. S., Swanson, S. L., Collins Jr, J. W., & Finley, S. L. (1990). Intrauterine growth retardation: altered hepatic energy and redox states in the fetal rat. Pediatric Research, 27(1), 56-73. https://doi.org/10.1203/00006450-199001000-00017

Park, K. S., Kim, S. K., Kim, M. S., Cho, E. Y., Lee, J. H., Lee, K. U., & Lee, H. K. (2003). Fetal and early postnatal protein malnutrition cause long-term changes in rat liver and muscle mitochondria. The Journal of Nutrition, 133(10), 3085-3090. https://doi.org/10.1093/jn/133.10.3085

Peterside, I. E., Selak, M. A., & Simmons, R. A. (2003). Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. American Journal of Physiology-Endocrinology And Metabolism, 285(6), E1258-E1266. https://doi.org/10.1152/ajpendo.00437.2002

PIC. (2016). Manual de especificación de nutrientes. Obtenido de: http://es.pic.com/sites/es_picgenus_com/Uploads/files/Downloads/Manuals/2016_Nutrient_Specifications_Manual_Spanish.pdf

Quisirumbay-Gaibor, J., Rodriguez-Saldaña, D., & Mena Pérez, R. (2018). Lechones de bajo peso al nacimiento en la producción porcina. Revisión de literature-Low-birthweight piglets in pig. Revista electrónica de Veterinaria, 19(2), 1-9.

Rostagno, H. S., Texeira Albino, L. F., Hannas, M. I., Lopes Donzele, J., Sakomura, N., Perazzo, F. G., . . . de Oliveira Brito, C. (2017). Tablas Brasileñas para Aves y Cerdos (Cuarta edición ed.). (H. Rostagno, Ed.) Viçosa: Universidad Federal de Viçosa. Obtenido de: https://eliasnutri.files.wordpress.com/2018/09/tablas-brasilec3b1as-aves-y-cerdos-cuarta-edicion-2017-11.pdf

Selak, M. A., Storey, B. T., Peterside, I., & Simmons, R. A. (2003). Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. American Journal of Physiology-Endocrinology and Metabolism, 285(1), E130-E137. https://doi.org/10.1152/ajpendo.00322.2002

Simmons, R. A., Suponitsky-Kroyter, I., & Selak, M. A. (2005). Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to β-cell failure. Journal of Biological Chemistry, 280(31), 28785-28791. https://doi.org/10.1074/jbc.M505695200

Thaler, R. C., Nelssen, J. L., Goodband, R. D., & Allee, G. L. (1989). Effect of Dietary Folic Acid Supplementation on Sow Performance through Two Parities 1, 2. Journal of Animal Science, 67(12), 3360-3369.

Tremblay, G. F., Matte, J. J., Dufour, J. J., & Brisson, G. J. (1989). Survival Rate and Development of Fetuses during the First 30 Days of Gestation after Folic Acid Addition to a Swine Diet 1, 2. Journal of Animal Science, 67(3), 724-732.

U.S. Pork Center of Excellence. (2010). National Swine Nutrition Guide. Communities of National Cooperation. United States of America. Obtenido de: https://www.usporkcenter.org/product/national-swine-nutrition-guide/

van Beynum, I. M., Kapusta, L., Bakker, M. K., den Heijer, M., Blom, H. J., & de Walle, H. E. (2009). Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: a registry-based case–control study in the northern Netherlands. European heart journal, 31(4), 464-471. https://doi.org/10.1093/eurheartj/ehp479

van Wettere, W. E., Smits, R. J., & Hughes, P. E. (2013). Methyl donor supplementation of gestating sow diets improves pregnancy outcomes and litter size. Animal Production Science, 53(1), 1-7. https://doi.org/10.1071/AN11350

Whittemore, C. T., Tullis, J. B., & Emmans, G. C. (1988). Protein growth in pigs. Animal Science, 46, 437-445. https://doi.org/10.1017/S0003356100019048

Ying, Y. A., Bing, Y. U., Chen, D. W., Gang, T. I., Mao, X. B., Zheng, P., & Liu, J. B. (2013). Effect of dietary folic acid supplementation on growth performance and hepatic protein metabolism in early-weaned intrauterine growth retardation piglets. Journal of Integrative Agriculture, 12(5), 862-868. https://doi.org/10.1016/S2095-3119(13)60262-2

Yu, B., Yang, G. B., Liu, J. B., & Chen, D. W. (2010). Effects of folic acid supplementation on growth performance and hepatic folate metabolism-related gene expressions in weaned piglets. Frontiers of Agriculture in China, 4, 494-500. https://doi.org/10.1007/s11703-010-1047-1

Publicado
2019-06-18
Cómo citar
Quisirumbay Gaibor, J. (2019). Ácido fólico: requerimientos e importancia en cerdas y lechones. Siembra, 6(1), 024-031. Recuperado a partir de http://revistadigital.uce.edu.ec/index.php/SIEMBRA/article/view/1526
Sección
Artículos originales. Ciencias pecuarias