Suplementación alimenticia de glutamina sobre el desempeño productivo en pollos de engorde

Contenido principal del artículo

Jimmy Rolando Quisirumbay Gaibor
Raquel Torres
Jhon Yupanqui
Diego Martínez Patiño-Patroni
Carlos Vílchez Perales

Resumen

El objetivo de esta investigación fue evaluar el tamaño del efecto de la suplementación de glutamina sobre el rendimiento productivo de pollos de engorde, la consistencia de su efecto y la influencia de otros factores mediante el uso de meta-análisis. Se encontró que la suplementación de glutamina favorece el aprovechamiento de nutrientes reflejado en menores valores de conversión alimenticia (calculada con ganancia de peso) 1,484 versus 1,518, y un tamaño medio de efecto de -0,031 (diferencia de medias) (P=0,00005). Los pollos control requieren consumir 31 g adicionales de alimento para producir 1 kg de peso ganado en comparación con el grupo que sí recibió el aminoácido en estudio. Cuando la variable analizada fue conversión alimenticia (calculada con peso vivo) (1,468 vs. 1,478), se determinó que los pollos sin glutamina requieren de 15 g adicionales de alimento para producir 1 kg de peso vivo (diferencia de medias= -0,015; P=0,00001). No se encontró un efecto consistente entre los estudios realizados, presentándose valores elevados en el test de inconsistencia, 100% y 81,6% para las dos formas de conversión de alimento. Las meta-regresiones señalan que factores relacionados al diseño del experimento o ciertos niveles de nutrientes tienen impacto sobre la variable en estudio. Se concluye que la suplementación de glutamina favorece el rendimiento productivo en pollos de engorde. Sin embargo, se debe considerar el diseño del estudio y la formulación de la dieta

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Quisirumbay Gaibor, J. R., Torres, R. ., Yupanqui, J. ., Martínez Patiño-Patroni, D. ., & Vílchez Perales, C. . (2019). Suplementación alimenticia de glutamina sobre el desempeño productivo en pollos de engorde. Siembra, 6(2), 015–024. https://doi.org/10.29166/siembra.v6i2.1622
Sección
Artículos originales. Ciencias pecuarias

Citas

Abdulkarimi, R., Shahir, M. H., & Daneshyar, M. (2019). Effects of dietary glutamine and arginine supplementation on performance, intestinal morphology and ascites mortality in broiler chickens reared under cold environment. Asian-Australasian Journal of Animal Sciences, 32(1), 110-117. https://doi.org/10.5713/ajas.17.0150

Askanazi, J., Carpentier, Y. A., Michelsen, C. B., Elwyn, D. H., Furst, P., Kantrowitz, L., & Kinney, J. M. (1980). Muscle and plasma amino acids following injury: influence of intercurrent infection. Annals of Surgery, 192(1), 78.

Avellaneda, Y., Hernández, J., Ariza, C., & Afanador, T. (2008). Efecto de la suplementación de L-glutamina y L-glutamato (Aminogut®) sobre el crecimiento temprano de pollos de engorde. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 55(2), 77-90.

Ayazi, M. (2014). The effect of dietary glutamine supplementation on performance and blood parameter, carcass characteristics, quality and characteristics meat of broiler chickens under continuous heat stress condition. International Journal of Farming and Allied Sciences, 3(12), 1234-1242.

Bartell, S. M., & Batal, A. B. (2007). The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poultry Science, 86(9), 1940-1947. https://doi.org/10.1093/ps/86.9.1940

Bax, L., 2016. MIX 2.0 - Professional software for meta-analysis in Excel. Version 2.0.1.5. BiostatXL. Obtenido de: https://www.meta-analysis-made-easy.com/

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011). Introduction to meta-analysis. John Wiley & Sons.

Calder, P. C., & Yaqoob, P. (1999). Glutamine and the immune system. Amino acids, 17(3), 227-241. https://doi.org/10.1007/BF01366922

Dai, S. F., Gao, F., Zhang, W. H., Song, S. X., Xu, X. L., & Zhou, G. H. (2011). Effects of dietary glutamine and gamma-aminobutyric acid on performance, carcass characteristics and serum parameters in broilers under circular heat stress. Animal Feed Science and Technology, 168(1-2), 51-60. https://doi.org/10.1016/j.anifeedsci.2011.03.005

Dai, S. F., Wang, L. K., Wen, A. Y., Wang, L. X., & Jin, G. M. (2009). Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress. British Poultry Science, 50(3), 333-340. https://doi.org/10.1080/00071660902806947

Devi Priya, K., Selvaraj, P., Nanjappan, K., & Jayachandran, S. (2010). Oral supplementation of putrescine and l-glutamine on the growth performance, immunity, intestinal enzymes in the broiler chickens. Tamilnadu Journal of Veterinary and Animal Sciences, 6 (5), 250-254.

Fasina, Y. O., Bowers, J. B., Hess, J. B., & McKee, S. R. (2010). Effect of dietary glutamine supplementation on Salmonella colonization in the ceca of young broiler chicks. Poultry Science, 89(5), 1042-1048. https://doi.org/10.3382/ps.2009-00415

Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in Medicine, 21(11), 1539-1558. https://doi.org/10.1002/sim.1186

Hu, H., Bai, X., Shah, A. A., Wen, A. Y., Hua, J. L., Che, C. Y., & Dai, S. F. (2016). Dietary supplementation with glutamine and γ‐aminobutyric acid improves growth performance and serum parameters in 22‐to 35‐day‐old broilers exposed to hot environment. Journal of Animal Physiology and Animal Nutrition, 100(2), 361-370. https://doi.org/10.1111/jpn.12346

Jazideh, F., Farhoomand, P., Daneshyar, M., & Najafi, G. (2014). The effects of dietary glutamine supplementation on growth performance and intestinal morphology of broiler chickens reared under hot conditions. Turkish Journal of Veterinary and Animal Sciences, 38(3), 264-270. https://doi.org/10.3906/vet-1210-32

Labow, B. I., Souba, W. W., & Abcouwer, S. F. (2001). Mechanisms governing the expression of the enzymes of glutamine metabolism–glutaminase and glutamine synthetase. The Journal of Nutrition, 131(9), 2467S-2474S. https://doi.org/10.1093/jn/131.9.2467S

Lean, I. J., Rabiee, A. R., Duffield, T. F., & Dohoo, I. R. (2009). Invited review: Use of meta-analysis in animal health and reproduction: Methods and applications. Journal of Dairy Science, 92(8), 3545-3565. https://doi.org/10.3168/jds.2009-2140

Luquetti, B. C., Alarcon, M. F., Lunedo, R., Campos, D. M., Furlan, R. L., & Macari, M. (2016). Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. Scientia Agricola, 73(4), 322-327. http://dx.doi.org/10.1590/0103-9016-2015-0114

Maiorka, A., Silva, A. V., Santin, E., Dahlke, F., Bruno, L. D., Boleli, I. C., & Trautenmuller, H. (2016). Effect of broiler breeder age and glutamine supplementation on the development of the intestinal mucosa of 7-day-old chicks. Revista Brasileira de Ciência Avícola, 18(1), 17-22. http://dx.doi.org/10.1590/1516-635X1801017-022

Manvailer, G. V., Kiefer, C., de Souza, K. M., Marçal, D. A., Paiva, L. L., Rodrigues, G. P., & Ozelame, A. M. (2015). Glutamine for broilers reared in hot environment. Archivos de Zootecnia, 64(248), 377-382.

Menconi, A., Kallapura, G., Hernandez-Velasco, X., Latorre, J., Morgan, M., Pumford, N. R., & Barton, J. (2013). Effect of glutamine supplementation associated with probiotics on salmonella typhimurium and nitric oxide or glutamine with perinatal supplement on growth performance and intestinal morphology in broiler chickens. Clinical Microbiology, 2(120), 1-7. http://dx.doi.org/10.4172/2327-5073.1000120

Murakami, A. E., Sakamoto, M. I., Natali, M. R., Souza, L. M., & Franco, J. R. (2007). Supplementation of glutamine and vitamin E on the morphometry of the intestinal mucosa in broiler chickens. Poultry Science, 86(3), 488-495. https://doi.org/10.1093/ps/86.3.488

Muro, E. M., Pelícia, V. C., Vercese, F., de Souza, I. G., Pimenta, G. M., Oliveira, R. D., & Sartori, J. R. (2015). Aditivos fitogênicos e glutamina mais ácido glutâmico na dieta de frangos desafiados com coccidiose. Agrarian, 8(29), 304-311.

Mussini, F. J., Goodgame, S. D., Lu, C., Bradley, C. D., Fiscus, S. M., & Waldroup, P. W. (2012). A nutritional approach to the use of anticoccidial vaccines in broilers: glutamine utilization in critical stages of immunity acquisition. International Journal of Poultry Science, 11(4), 243-246.

Namroud, N. F., Shivazad, M., Zaghari, M., Madadgar, O., & Nourijelyani, K. (2017). Impact of dietary glutamine on amino acid digestibility values and intestinal morphometric parameters in neonate chicks. South African Journal of Animal Science, 47(4), 440-453. http://dx.doi.org/10.4314/sajas.v47i4.3

Nascimento, G. M., Leandro, N. S., Café, M. B., Stringhini, J. H., Andrade, M. A., Martinez, K. D., & Mascarenhas, A. G. (2014). Performance and intestinal characteristics of broiler chicken fed diet with glutamine in the diet without anticoccidials agents. Revista Brasileira de Saúde e Produção Animal, 15(3), 637-648. http://dx.doi.org/10.1590/S1519-99402014000300011

Nassiri Moghaddam, H., & Alizadeh-Ghamsari, A. H. (2013). Improved performance and small intestinal development of broiler chickens by dietary L-glutamine supplementation. Journal of Applied Animal Research, 41(1), 1-7. https://doi.org/10.1080/09712119.2012.738214

Newsholme, P. (2001). Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? The Journal of Nutrition, 131(9), 2515S-2522S. https://doi.org/10.1093/jn/131.9.2515S

Nitsan, Z., Dunnington, E. A. & Siegel, P. B., 1991. Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight. Poultry Science, 70(10), 2040-2048. https://doi.org/10.3382/ps.0702040

Olubodun, J. O., Zulkifli, I., Farjam, A. S., Hair-Bejo, M., & Kasim, A. (2015). Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition. Italian Journal of Animal Science, 14(1), 3263. https://doi.org/10.4081/ijas.2015.3263

Phanvijhitsiri, K., Musch, M. W., Ropeleski, M. J., & Chang, E. B. (2006). Heat induction of heat shock protein 25 requires cellular glutamine in intestinal epithelial cells. American Journal of Physiology-Cell Physiology, 291(2), C290-C299. https://doi.org/10.1152/ajpcell.00225.2005

Pohlenz, C., Buentello, A., Bakke, A. M., & Gatlin III, D. M. (2012). Free dietary glutamine improves intestinal morphology and increases enterocyte migration rates, but has limited effects on plasma amino acid profile and growth performance of channel catfish Ictalurus punctatus. Aquaculture, 370, 32-39. https://doi.org/10.1016/j.aquaculture.2012.10.002

Ribeiro, J. V., Albino, L. F., Rostagno, H. S., Hannas, M. I., Ribeiro, C. L., Vieira, R. A., & da Silva, D. L. (2015). Effects of dietary L-glutamine or L-glutamine plus L-glutamic acid supplementation programs on the performance and breast meat yield uniformity of 42-d-Old Broilers. Brazilian Journal of Poultry Science, 17(SPE), 93-98. http://dx.doi.org/10.1590/1516-635XSPECIALISSUENutrition-PoultryFeedingAdditives093-098

Roth, E. (2008). Nonnutritive effects of glutamine. The Journal of Nutrition, 138(10), 2025S-2031S. https://doi.org/10.1093/jn/138.10.2025S

Sakamoto, M. I., Faria, D. E., Nakagi, V. S., Negrão, J. A., Araújo, R. B., Souza, K. M., & Previero, T. C. (2011). Utilization of glutamine, associated with glutamic acid, on development and enzymatic activity in broiler chickens. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(4), 962-972. http://dx.doi.org/10.1590/S0102-09352011000400023

Salmanzadeh, M., Ebrahimnezhad, Y., Aghdam Shahryar, H., & Ghiasi Ghaleh-Kandi, J. (2016). The effects of in ovo feeding of glutamine in broiler breeder eggs on hatchability, development of the gastrointestinal tract, growth performance and carcass characteristics of broiler chickens. Archives Animal Breeding, 59(2), 235-242. https://doi.org/10.5194/aab-59-235-2016

Sauvant, D., Schmidely, P., Daudin, J. J., & St-Pierre, N. R. (2008). Meta-analyses of experimental data in animal nutrition. Animal, 2(8), 1203-1214. https://doi.org/10.1017/S1751731108002280

Shakeri, M., Oskoueian, E., Najafi, P., & Ebrahimi, M. (2015). Impact of glutamine in drinking water on performance and intestinal morphology of broiler chickens under high stocking density. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 42(1), 51-56. https://doi.org/10.16988/iuvfd.2016.42317

Sifa, D., Bai, X., Zhang, D., Hu, H., Wu, X., Wen, A., Zhao, L. (2018). Dietary glutamine improves meat quality, skeletal muscle antioxidant capacity and glutamine metabolism in broilers under acute heat stress. Journal of Applied Animal Research, 46(1), 1412-1417. https://doi.org/10.1080/09712119.2018.1520113

Soares, A. D., Costa, K. A., Wanner, S. P., Santos, R. G., Fernandes, S. O., Martins, F. S., & Cardoso, V. N. (2014). Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure. British Journal of Nutrition, 112(10), 1601-1610. https://doi.org/10.1017/S0007114514002608

Soltan, M. A. (2009). Influence of dietary glutamine supplementation on growth performance, small intestinal morphology, immune response and some blood parameters of broiler chickens. International Journal of Poultry Science, 8(1), 60-68.

Wang, H., Zhang, C., Wu, G., Sun, Y., Wang, B., He, B., ... & Wu, Z. (2014). Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. The Journal of Nutrition, 145(1), 25-31. https://doi.org/10.3945/jn.114.202515

Wischmeyer, P. E. (2002). Glutamine and heat shock protein expression. Nutrition, 18(3), 225-228. https://doi.org/10.1016/S0899-9007(01)00796-1

Wu, G., Bazer, F. W., Johnson, G. A., Knabe, D. A., Burghardt, R. C., Spencer, T. E., & Wang, J. J. (2011). Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production. Journal of Animal Science, 89(7), 2017-2030. https://doi.org/10.2527/jas.2010-3614

Xue, G. D., Barekatain, R., Wu, S. B., Choct, M., & Swick, R. A. (2018). Dietary L-glutamine supplementation improves growth performance, gut morphology, and serum biochemical indices of broiler chickens during necrotic enteritis challenge. Poultry Science, 97(4), 1334-1341. https://doi.org/10.3382/ps/pex444

Yi, G. F., Allee, G. L., Knight, C. D., & Dibner, J. J. (2005). Impact of glutamine and oasis hatchling supplement on growth performance, small intestinal morphology, and immune response of broilers vaccinated and challenged with Eimeria maxima. Poultry Science, 84(2), 283-293. https://doi.org/10.1093/ps/84.2.283

Zavarize, K. C., Sartori, J., Pelícia, V., Pezzato, A., Araujo, P., Stradiotti, A., & Madeira, L. (2011). Glutamina e nucleotídeos na dieta de frangos de corte criados no sistema alternativo. Archivos de Zootecnia, 60(232), 913-920.

Zhong, X., Li, W., Huang, X., Wang, Y., Zhang, L., Zhou, Y., ... & Wang, T. (2012). Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Archives of Animal Nutrition, 66(5), 347-356. https://doi.org/10.1080/1745039X.2012.683325

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.