Calculation methods of the reference evapotranspiration for the Tumbaco Valley

Main Article Content

Randon Stalin Ortiz
Maritza Chile A.

Abstract

The precise determination of the reference evapotranspiration ensures computing real values of the crop water requirements. The objective of the study was to evaluate nine methods to determine the reference evapotranspiration for the environmental conditions of the Tumbaco Valley located in the province of Pichincha (Ecuador). Monthly climatological data from La Tola station was used to estimate ETo. The methods used to determine ETO were FAO56, Class A pan, modified Thornthwaite, Hargreaves, Jensen - Haise, Makkink, Priestley - Taylor, Turc and FAO Radiation. The following inferential parameters were used in the analysis, considering FAO56 as base: the absolute mean error, the coefficient of determination, the concordance coefficient and the confident coefficient. The results for monthly average climatological data showed that: i) the FAO Radiation method presented good statistical indexes; ii) the methods Jensen and Haise, Makkink and Priestley - Taylor presented poor indexes; iii) the methods Class A pan, modified Thornthwaite, Hargreaves and Turc presented the lowest inferential values. In conclusion, the method that should be used to estimate monthly ETo for the agro ecological environment of the Tumbaco Valley with good accuracy is FAO56.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Ortiz, R. S., & Chile A., M. (2020). Calculation methods of the reference evapotranspiration for the Tumbaco Valley. Siembra, 7(1), 070–079. https://doi.org/10.29166/siembra.v7i1.1450
Section
Original article

References

Allen, R., Burman, R., & Jensen, M. (1990). Evapotranspiration and Irrigation Water Requirements. New York: American Society of Civil Engineers.

Allen, R., Pereira, L., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Roma: FAO.

Bhabagrahi, S., Imtisenla, W., Bidyut, D., & Bhagwati, B. (2012). Standardization of Reference Evapotranspiration Models for a Subhumid Valley Rangeland in the Eastern Himalayas. Journal of Irrigation and Drainage Engineering, 138, 880-895.

Camargo, A., Marín, F., Sentelhas, P., & Picini, A. (1999). Adjust of the Thornthwaite's method to estimate the potential evapotranspiration for arid and superhumid climates, based on daily temperature amplitude. Revista Brasileira de Agrometeorología, 7(2), 251-257.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, , 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

CISPDR - Changjiang Institute of Survey, Planning, Desing and Research. (2016). Plan nacional de la gestión integrada e integral de los recursos hídricos de las cuencas y micro cuencas hidrográficas del Ecuador. Ecuador: Secretaría Nacional del Agua.

Contreras, J. (2015). Análisis comparativo de cuatro modelos de evapotranspiración de referencia en la microcuenca del río Quinuas. Cuenca: Universidad de Cuenca.

Doorenbos, J., & Pruitt, W. (1977). Guidelines for predicting crop water requirements. Roma: FAO.

Hargreaves, G., & Samani, Z. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96-99. https://doi.org/10.13031/2013.26773

INAMHI. (2018). Información climatológica proporcionada por el INAMHI. Quito, Ecuador.

Landon, R. (2004). An evaluation of reference evapotranspiration models in Louisiana. United States: Louisiana State University.

Lavado Casimiro, W.S., Lhomme, J.-P., Labat, D., Guyot, J.-L., & Boulet, G. (2015). Estimación de la evapotranspiración de referencia (FAO-56 Penman – Monteith) con limitados datos climáticos en la cuenca andina amazónica peruana. Revista Peruana Geo-Atmosférica, 4, 31-43.

Lázaro, F., Célia, M., & Otto, C. (2012). Evaluation of six empirical evapotranspiration equations – Case study: campos dos Goytacazas. Revista Brasileira de Meteorología, 27(3), 272-280. https://doi.org/10.1590/S0102-77862012000300002

Ortiz, R. Tamayo, Ch. Chile, M. & Méndez, A. (2018). Coeficiente del tanque evaporímetro Clase A para estimar la evapotranspiración de referencia para el valle de Tumbaco. Siembra, 5(1), 16-25.

Priestley, C., & Taylor, R. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Atmospheric Physics, 100(2), 81-92.

Samuels, P. (2014). Pearson Correlation. Disponible en: http://www.statstutor.ac.uk/resources/uploaded/pearsoncorrelation3.pdf

Sánchez, M., & Carvacho, L. (2011). Comparación de ecuaciones empíricas para el cálculo de la evapotranspiración de referencia en la región del libertador general Bernardo O´Higgins, Chile. Revista de Geografía Norte Grande, 50, 171-186. http://dx.doi.org/10.4067/S0718-34022011000300010

Sentelhas, P., & Folegatti, M. (2003). Class A pan coefficients (Kp) to estimate daily reference evapotranspiration (ETo). Revista Brasileira de Engenharia Agricola e Ambiental, 7(1), 111-115. https://doi.org/10.1590/S1415-43662003000100018

Silva, G. H. da, Dias, S. H. B., Ferreira, L. B., Santos, J. É. O., & Cunha, F. F. da. (2018). Performance of different methods for reference evapotranspiration estimation in Jaíba, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(2), 83-89. https://doi.org/10.1590/1807-1929/agriambi.v22n2p83-89

Thornthwaite, C. (1948). An approach toward a Rational Classification of Climate. American Geographical Society, 38(1), 55-94.

Willmott, C., Robeson, S., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32, 2088-2094. https://doi.org/10.1002/joc.2419

Most read articles by the same author(s)