Calculation methods of the reference evapotranspiration for the Tumbaco Valley
Main Article Content
Abstract
The precise determination of the reference evapotranspiration ensures computing real values of the crop water requirements. The objective of the study was to evaluate nine methods to determine the reference evapotranspiration for the environmental conditions of the Tumbaco Valley located in the province of Pichincha (Ecuador). Monthly climatological data from La Tola station was used to estimate ETo. The methods used to determine ETO were FAO56, Class A pan, modified Thornthwaite, Hargreaves, Jensen - Haise, Makkink, Priestley - Taylor, Turc and FAO Radiation. The following inferential parameters were used in the analysis, considering FAO56 as base: the absolute mean error, the coefficient of determination, the concordance coefficient and the confident coefficient. The results for monthly average climatological data showed that: i) the FAO Radiation method presented good statistical indexes; ii) the methods Jensen and Haise, Makkink and Priestley - Taylor presented poor indexes; iii) the methods Class A pan, modified Thornthwaite, Hargreaves and Turc presented the lowest inferential values. In conclusion, the method that should be used to estimate monthly ETo for the agro ecological environment of the Tumbaco Valley with good accuracy is FAO56.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Allen, R., Burman, R., & Jensen, M. (1990). Evapotranspiration and Irrigation Water Requirements. New York: American Society of Civil Engineers.
Allen, R., Pereira, L., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Roma: FAO.
Bhabagrahi, S., Imtisenla, W., Bidyut, D., & Bhagwati, B. (2012). Standardization of Reference Evapotranspiration Models for a Subhumid Valley Rangeland in the Eastern Himalayas. Journal of Irrigation and Drainage Engineering, 138, 880-895.
Camargo, A., Marín, F., Sentelhas, P., & Picini, A. (1999). Adjust of the Thornthwaite's method to estimate the potential evapotranspiration for arid and superhumid climates, based on daily temperature amplitude. Revista Brasileira de Agrometeorología, 7(2), 251-257.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, , 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
CISPDR - Changjiang Institute of Survey, Planning, Desing and Research. (2016). Plan nacional de la gestión integrada e integral de los recursos hídricos de las cuencas y micro cuencas hidrográficas del Ecuador. Ecuador: Secretaría Nacional del Agua.
Contreras, J. (2015). Análisis comparativo de cuatro modelos de evapotranspiración de referencia en la microcuenca del río Quinuas. Cuenca: Universidad de Cuenca.
Doorenbos, J., & Pruitt, W. (1977). Guidelines for predicting crop water requirements. Roma: FAO.
Hargreaves, G., & Samani, Z. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96-99. https://doi.org/10.13031/2013.26773
INAMHI. (2018). Información climatológica proporcionada por el INAMHI. Quito, Ecuador.
Landon, R. (2004). An evaluation of reference evapotranspiration models in Louisiana. United States: Louisiana State University.
Lavado Casimiro, W.S., Lhomme, J.-P., Labat, D., Guyot, J.-L., & Boulet, G. (2015). Estimación de la evapotranspiración de referencia (FAO-56 Penman – Monteith) con limitados datos climáticos en la cuenca andina amazónica peruana. Revista Peruana Geo-Atmosférica, 4, 31-43.
Lázaro, F., Célia, M., & Otto, C. (2012). Evaluation of six empirical evapotranspiration equations – Case study: campos dos Goytacazas. Revista Brasileira de Meteorología, 27(3), 272-280. https://doi.org/10.1590/S0102-77862012000300002
Ortiz, R. Tamayo, Ch. Chile, M. & Méndez, A. (2018). Coeficiente del tanque evaporímetro Clase A para estimar la evapotranspiración de referencia para el valle de Tumbaco. Siembra, 5(1), 16-25.
Priestley, C., & Taylor, R. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Atmospheric Physics, 100(2), 81-92.
Samuels, P. (2014). Pearson Correlation. Disponible en: http://www.statstutor.ac.uk/resources/uploaded/pearsoncorrelation3.pdf
Sánchez, M., & Carvacho, L. (2011). Comparación de ecuaciones empíricas para el cálculo de la evapotranspiración de referencia en la región del libertador general Bernardo O´Higgins, Chile. Revista de Geografía Norte Grande, 50, 171-186. http://dx.doi.org/10.4067/S0718-34022011000300010
Sentelhas, P., & Folegatti, M. (2003). Class A pan coefficients (Kp) to estimate daily reference evapotranspiration (ETo). Revista Brasileira de Engenharia Agricola e Ambiental, 7(1), 111-115. https://doi.org/10.1590/S1415-43662003000100018
Silva, G. H. da, Dias, S. H. B., Ferreira, L. B., Santos, J. É. O., & Cunha, F. F. da. (2018). Performance of different methods for reference evapotranspiration estimation in Jaíba, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(2), 83-89. https://doi.org/10.1590/1807-1929/agriambi.v22n2p83-89
Thornthwaite, C. (1948). An approach toward a Rational Classification of Climate. American Geographical Society, 38(1), 55-94.
Willmott, C., Robeson, S., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32, 2088-2094. https://doi.org/10.1002/joc.2419