Evaluation of branched-chain amino acid supplementation on productive performance and biochemical variables in weaned piglets
Main Article Content
Abstract
Weaning in mammals is an event of maximum stress that generates metabolic wear with mobilization of nutrients for the maintenance of body homeostasis. Piglets experience decreased feed intake and lower productive performance. The objective of the present study was to evaluate the effect of dietary supplementation of branched-chain amino acids (BCAA) in weaned piglets by measuring productive performance and biochemical blood tests. A total of 16 piglets distributed in four treatments were used: T1 = control 1 (without milk supplement), T2 = control 2 (milk supplement), T3 = milk supplement + BCAA (0.5% form milk supplement composition), T4 = milk supplement + BCAA (1%). The piglets of the four groups presented a similar productive performance in all the variables analyzed: daily weight gain, feed consumption and feed conversion. Regarding blood variables, no statistical difference was found either. BCAA supplementation through feed did not improve productive performance or biochemical variables in piglets weaned at 28 days after 7 days of administration.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Campbell, J. M., Crenshaw, J. D., y Polo, J. (2013). The biological stress of early weaned piglets. Journal of animal science and biotechnology, 4(1), 1-4. https://doi.org/10.1186/2049-1891-4-19
Cunningham, J. G., y Klein, B. G. (2014). Fisiología veterinaria (5a ed.). Elsevier.
Escobar, J., Frank, J. W., Suryawan, A., Nguyen, H. V., Kimball, S. R., Jefferson, L. S., y Davis, T. A. (2005). Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. American Journal of Physiology-Endocrinology and Metabolism, 288(5), E914-E921. https://doi.org/10.1152/ajpendo.00510.2004
Escobar, J., Frank, J. W., Suryawan, A., Nguyen, H. V., Kimball, S. R., Jefferson, L. S., y Davis, T. A. (2006). Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. American Journal of Physiology-Endocrinology and Metabolism, 290(4), E612-E621. https://doi.org/10.1152/ajpendo.00402.2005
HUMAN Gesellschatt Fur Biochemica and Diagnostica mbH. (2008). Manual de procedimientos. HUMAN. https://www.human.de/
Murgas Torrazza, R., Suryawan , A., Gazzaneo, M. C., Orellana, R. A., Frank, J. W., Nguyen, H. V., y Davis, T. A. (2010). Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation. The Journal of Nutrition, 140(12), 2145-2152. https://doi.org/10.3945/jn.110.128421
National Research Council. (2012). Nutrient requirements of swine (11th ed.). National Academies Press. https://doi.org/10.17226/13298
Pluske, J. R., Hampson, D. J., y Williams, I. H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livestock production science, 51(1-3), 215-236. https://doi.org/10.1016/S0301-6226(97)00057-2
Pluske, J. R., Turpin, D. L., y Kim, J. C. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187-196. https://doi.org/10.1016/j.aninu.2017.12.004
Ren, M., Zhang, S. H., Zeng, X. F., Liu, H., y Qiao, S. Y. (2015). Branched-chain amino acids are beneficial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian-Australasian Journal of Animal Sciences, 28(12), 1742. https://doi.org/10.5713/ajas.14.0131
Suryawan, A., Murgas Torrazza, R., Gazzaneo, M. C., Orellana, R. A., Fiorotto, M. L., El-Kadi, S. W., y Davis, T. A. (2012). Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways. Pediatric Research, 71(1), 324-331. https://doi.org/10.1038/pr.2011.79
Wang, J., Tan, B. E., Li, G. R., Xiao, H., Huang, B., Zhang, M. H., y Yin, Y. L. (2016). Polyamine metabolism in the intestine of piglets is altered by weaning and proline supplementation. Journal of Animal Science, 94(suppl_3), 423-428. https://doi.org/10.2527/jas.2015-9464
Wu, F., Xiong, X., Yang, H., Yao, K., Duan, Y., Wang, X., y Yin, Y. (2017). Expression of proteins in intestinal middle villus epithelial cells of weaning piglets. Frontiers in Bioscience-Landmark, 22(4), 539-557. https://doi.org/10.2741/4501
Wu, G., Wu, Z., Dai, Z., Yang, Y., Wang, W., Liu, C., y Yin, Y. (2013). Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids, 44(4), 1107-1113. https://doi.org/10.1007/s00726-012-1444-2
Yang, H., Wang, X., Xiong, X., y Yin, Y. (2016a). Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis. Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep31917
Yang, H., Xiong, X., Wang, X., Tan, B., Li, T., y Yin, Y. (2016b). Effects of weaning on intestinal upper villus epithelial cells of piglets. PloS one, 11(3), e0150216. https://doi.org/10.1371/journal.pone.0150216
Yin, J., Ma, J., Li, Y., Ma, X., Chen, J., Zhang, H., y Yin, Y. (2020). Branched-chain amino acids, especially of leucine and valine, mediate the protein restricted response in a piglet model. Food & function, 11(2), 1304-1311. https://doi.org/10.1039/C9FO01757G
Yin, Y., Yao, K., Liu, Z., Gong, M., Ruan, Z., Deng, D., y Wu, G. (2010). Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids, 39(5), 1477-1486. https://doi.org/10.1007/s00726-010-0612-5
Zhang, S., Qiao, S., Ren, M., Zeng, X., Ma, X., Wu, Z., Thacker, P., y Wu, G. (2013). Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids, 45(5), 1191-1205. https://doi.org/10.1007/s00726-013-1577-y
Zheng, L., Wei, H., Cheng, C., Xiang, Q., Pang, J., y Peng, J. (2016). Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect. British Journal of Nutrition, 115(12), 2236-2245. https://doi.org/10.1017/S0007114516000842