Effect of four liming materials on acidity control of a soil from Loreto, Orellana

Main Article Content

Carmen Calva
José Espinosa

Abstract

A study was conducted in two phases, one at the Experimental Station greenhouse and other at the Soil Testing Lab, both belonging to the College of Agriculture, Central University. The objective was to evaluate the effect lime amendments to control soil acidity on a soil representative from the red acid soils classified as Oxic Dystrudepts at the Loreto canton, Orellana province. Soil presented an initial 5.2 pH, and values of 0.52 cmolc kg-1 of exchangeable acidity (H+ + Al+3) and 0.39 cmolc kg-1 of exchangeable aluminum (Al+3). Four amendments (calcium carbonate, dolomite, calcium oxide and magnesium carbonate) and 8 lime rates (0, 1.0, 1.5, 2.9, 3.0, 4.0, 6.0 t ha-1) were evaluated. Treatments were replicated 3 times giving a total of 24 experimental
units per amendment. The greenhouse experiment was started mixing the lime rates with 2 kg of soils and placing them in plastic pots which were kept at near field capacity for 45 days to allow complete reaction of the liming materials. After this time pots were seeded with wheat (Triticum vulgare) and were allowed to grow for 6 weeks. Above ground biomass was harvested to evaluate fresh and dry matter accumulation. Soils samples from the pots after harvest were used for the lab analysis determination of pH, H+ + Al+3 and Al+3. A complete randomized design was used for statistical evaluation. Greenhouse results indicated that the higher mean biomass yields of the indicator plant were obtained with the application of dolomite and calcium carbonate. It was also observed that the higher accumulation of biomass was obtained with amendment rates ranging from 1.0 to 1.5 t ha-1. Soil analysis demonstrated that pH values increased as lime rate increased, but the opposite was observed for H+ + Al+3 and Al+3, however, only the lower rates agreed with the rates that produced the higher yields. Graphic analysis of the pH with H+ and pH with Al+3 interactions showed the same tendencies. All this information documented the dynamics of the changes promoted by the addition of the amendments on biomass accumulation and soil properties and, in indirect form, the right rate of the amendment, but this information is not enough to deliver a rate recommendation fitted for every particular soil. It was proposed to use the method developed by Kamprath using the initial values of H+ + Al+3 to be plugged in the following formula: CaCO3 (t ha-1) = 2.0 x cmolc of + + Al+3 kg-1 of soil. When the numbers were plugged the result was CaCO3 (t ha-1) = 2.0 x 0.52 cmolc of H+ + Al+3 kg-1 of soil ≈ 1 t ha-1 CaCO3. This formula can then be used for all the acid soils with the same characteristics as the soil incubated at the greenhouse.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Calva, C., & Espinosa, J. (2017). Effect of four liming materials on acidity control of a soil from Loreto, Orellana. Siembra, 4(1), 110–120. https://doi.org/10.29166/siembra.v4i1.505
Section
Artículos originales. Suelos
Author Biographies

Carmen Calva, Central University of Ecuador

Facultad de Ciencias Agrícolas, Jerónimo Leiton y Av. La Gasca s/n. Ciudadela Universitaria. 170521 Quito, Ecuador

José Espinosa, Central University of Ecuador

Facultad de Ciencias Agrícolas, Jerónimo Leiton y Av. La Gasca s/n. Ciudadela Universitaria. 170521 Quito, Ecuador

References

Abreu Jr., C. H., Muraoka, T., & Lavorante, A. F. (2003). Relações entre acidez e propriedades químicas de solos Brasileiros. Scientia Agricola, 60(2), 337-343. Retrieved from Batista, M.,

Moscheta, I., Bonato, C., Batista, M., Garcia de Almeida, O., & Inoue, T. (2012). Aluminum in corn plants: Influence on growth and morpho-anatomy of root and leaf. Revista Brasileira de Ciência do Solo 37, 177-187.

Bertsch, F. (1998). La Fertilidad de los suelos y su manejo. San José, Costa Rica: Asociación Costarricense de la Ciencia del Suelo.

Bose, J., Babourina, O., & Rengel, Z. (2011). Role of magnesium in alleviation of aluminium toxicity in plants. Journal of Experimental Botany, 62(7), 2251-2264.

Cravo, M., Smyth, J., & Carvalho, E. (2012). Calagem em latossolo amarelo distrófco da Amazônia e sua influência em atributos químicos do solo e na produtividade de culturas anuais. Revista Brasileira de Ciência do Solo, 36, 895-907.

De Mello Prado, R., & Natalle, W. (2004). Calagem na nutrição de cálcio e no desenvolvimento do sistema radicular da goiabeira. Pesquisa Agropecuária. Brasileira., 39(10), 1007-1012.

Espinosa, J. (2008). Distribución, uso y manejo de los suelos de la Región Andina. Paper presented at the XI Congreso Ecuatoriano de la Ciencia del Suelo, Quito, Ecuador.

Espinosa, J., & Molina, E. (1999). Acidez y encaldo de los suelos. Quito, Ecuador: IPNI.

Espinosa, J., Sosa, C., & Rivera, M. (2014). Manual de Prácticas de Laboratorio, Curso de Edafología. Quito, Ecuador: Facultad de Ciencias Agrícolas, Universidad Central del Ecuador.

Fageria, N., & Baligar, V. (2008). Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. In D. Sparks (Ed.), Advances in Agronomy (pp. 345-399). London: Elsevier.

Fassbender, H., & Bornemisza, E. (1987). Química de suelos con énfasis en suelos de América Latina. San José, Costa Rica: IICA.

Granda, D. (2005). Plan de desarrollo estrategico participativo de la provincia de Orellana 2005-2015. Recuperado de: http://es. Scribd.com/doc/48658216/plan-de-desarrollo-participativo-provincial.

Guajala, A. (2016). Comunicación personal. MAGAP, Loreto. Kamprath, E. J. (1984a). Crop response to lime on soils in the tropics. In F. Adams (Ed.), Soil acidity and liming (pp. 349-368). Wisconsin,USA: ASA.

Kamprath, E. J. (1984b). Soil acidity and liming. Osorno, H. (2012). Mitos y realidades de las cales y enmiendas en Colombia. (Trabajo de Grado), Universidad Nacional de Colombia, Colombia-Medellín.

Osorno, H., & Osorno, L. (2010). Determinación de los requerimientos de cal. Suelos Ecuatoriales, 41(1), 29-35.

Sánchez, D., Merlo, J., Haro, R., & Acosta, M. (2017). Soils from de Amazonia. In J. Espinosa, J. Moreno, & G. Bernal (Eds.), Soils of Ecuador. London, England: Springer.

Sancho, H., & Molina, E. (2016). Efecto del Mg y pH en la reducción de la toxicidad de Al en plantas de banano cultivadas en solución hidropónica. Siembra, 3, 20-22.

SIGTIERRAS. (2011). Cartografía temática del Cantón Loreto.

Smyth, J. (2012). Soil acidity. In P. Ming Huang, Y. Li, & M. Sumner (Eds.), Handbook of Soil Science. Resource management and enviromental impacts (2nd ed.). USA: CRC Press.

Soil Survey Staff. (2006). Keys to soil taxonomy. Washington: USDA - NRCS.

Sumner, M., & Pavan, M. (2005). Alleviating soil acidity through organic matter management.

Vallejo, J. (2015). Producción de maíz fortalece la economía del sector agrícola en Orellana. Recuperado de: http://www.elciudadano.gob.ec/la-produccion-de-maiz-fortalece-la-economia-del-sector-agricola-en-orellana/.

Vélez, M. (2015). Efecto de la correccion de acidez y aplicacion de herbicidas en la erradicacion de la Llashipa (Pteridium arachoiedeum). (Tesis de Ingeniero Agrónomo), Universidad Nacional de Loja, Loja, Ecuador.

Zapata, R. (2004). La química de la acidez del suelo. Bogotá, Bogota, Colombia: Sociedad Colombiana de la Ciencia del Suelo.

Zebrowski, C., & Sourdat, M. (1997). Los factores de la pedogénesis y los suelos en Ecuador. In A. Winckell, R. Marocco, T. Winter, C. Huttel, P. Pourrut, C. Zebrowski, & M. Sourdat (Eds.), Los paisajes naturales del Ecuador (Vol. Condiciones generales del medio natural). Quito, Ecuador: Centro Ecuatoriano de Investigación Geográfica(CEDIG) - IPGH (Sección Ecuador) - ORSTOM (Francia) - IGM.

Most read articles by the same author(s)