Biodegradation of pesticides by compost-isolated microorganisms

Main Article Content

Ana María Cunachi Pillajo
Jimmy Romario Clemente Rivera
Talía Luzmila Barragán Rodríguez

Abstract

Soil degradation and low agricultural productivity have often been linked to the indiscriminate use of pesticides. In recent years, to restore soil fertility, farmers have increasingly turned to organic fertilizers, which supply both macronutrients and micronutrients to enhance crop production. However, the microbial load of these fertilizers can significantly impact soil biological populations, their diversity, and their activity. In this context, the objectives of this study were to assess the microbiological quality of compost samples and to conduct pesticide degradation tests. Microbiological analyses revealed that the compost’s microbial load was primarily composed of phytopathogenic fungi, such as Fusarium spp. and Cladosporium spp., as well as phytopathogenic bacteria, including Pseudomonas spp. and Enterobacteriaceae, which are pathogenic to humans and animals. The population and diversity of actinomycetes were notably low. Previous analyses identified the persistence of pesticides such as glyphosate, chlorfenapyr, and difenoconazole in the samples. The most abundant bacteria and actinomycetes, identified as Pseudomonas spp. and Streptomyces spp. (ACP1 and ACP2), were effective in degrading these pesticides under in vitro conditions. Specifically, difenoconazole was degraded by up to 70%, chlorfenapyr by 44%, and glyphosate by 30%, both individually and in mixtures. These results demonstrate the potential of these microorganisms for use in decontamination and bioremediation processes by reducing pesticide concentrations in soil.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Cunachi Pillajo, A. M., Clemente Rivera, J. R., & Barragán Rodríguez, T. L. (2025). Biodegradation of pesticides by compost-isolated microorganisms. Siembra, 12(2), e6949. https://doi.org/10.29166/siembra.v12i2.6949
Section
Original article
Author Biographies

Ana María Cunachi Pillajo, Escuela Superior Politécnica de Chimborazo. Facultad Recursos Naturales. Laboratorio Ciencias Biológicas. Panamericana Sur Km 1 ½. CP 060106. Riobamba, Chimborazo, Ecuador

https://orcid.org/0000-0001-6391-3489

Jimmy Romario Clemente Rivera, Escuela Superior Politécnica de Chimborazo. Facultad de Ciencias. Panamericana Sur Km 1 ½. 060106. Riobamba. Chimborazo. Ecuador

https://orcid.org/0009-0000-8671-3914

Talía Luzmila Barragán Rodríguez, Escuela Superior Politécnica de Chimborazo. Facultad de Ciencias. Panamericana Sur Km 1 ½. 060106. Riobamba. Chimborazo. Ecuador

https://orcid.org/0009-0004-1062-4586

References

Agu, K. C., & Chidozie, C. P. (2021). An improved slide culture technique for the microscopic identification of fungal species. International Journal of Trend in Scientific Research and Development, 6(1), 243-254. https://www.ijtsrd.com/papers/ijtsrd45058.pdf

Ahamad, A., & Kumar, J. (2023). Pyrethroid pesticides: An overview on classification, toxicological assessment and monitoring. Journal of Hazardous Materials Advances, 10, 100284. https://doi.org/10.1016/j.hazadv.2023.100284 DOI: https://doi.org/10.1016/j.hazadv.2023.100284

Ahmad, K. S. (2020). Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan. Folia microbiologica, 65(5), 801-810. https://doi.org/10.1007/s12223-020-00792-7 DOI: https://doi.org/10.1007/s12223-020-00792-7

Ahmad, S., Ahmad, H. W., & Bhatt, P. (2022). Microbial adaptation and impact into the pesticide’s degradation. Archives of Microbiology, 204(5), 288. https://doi.org/10.1007/s00203-022-02899-6 DOI: https://doi.org/10.1007/s00203-022-02899-6

Akyol, Ç., Ince, O., & Ince, B. (2019). Crop-based composting of lignocellulosic digestates: Focus on bacterial and fungal diversity. Bioresource technology, 288, 121549. https://doi.org/10.1016/j.biortech.2019.121549 DOI: https://doi.org/10.1016/j.biortech.2019.121549

Ameen, F., & Al-Homaidan, A. A. (2020). Compost inoculated with fungi from a mangrove habitat improved the growth and disease defense of vegetable plants. Sustainability, 13(1), 124. https://doi.org/10.3390/su13010124 DOI: https://doi.org/10.3390/su13010124

An, Y. Q., Dong, Y. L., Hao, S. N., Xiao, H., Tian, Y. P., & Gong, Y. (2024). Survival after chlorfenapyr intoxication by non-gastrointestinal route. Clinical Toxicology, 62(2), 134-135. https://doi.org/10.1080/15563650.2024.2310748 DOI: https://doi.org/10.1080/15563650.2024.2310748

Araujo, R. (2022). Advances in soil engineering: sustainable strategies for rhizosphere and bulk soil microbiome enrichment. Frontiers in Bioscience-Landmark, 27(6), 195. https://doi.org/10.31083/j.fbl2706195 DOI: https://doi.org/10.31083/j.fbl2706195

Ayed, F., Abdallah, R. A. B., Jabnoun-Khiareddine, H., & Daami-Remadi, M. (2021). Selection of compost-derived actinomycetes with plant-growth promoting and tomato stem rot biocontrol potentialities. Journal of Phytopathology and Disease Management, 8(1), 79-91. https://core.ac.uk/download/483700402.pdf

Bamdad, H., Papari, S., Lazarovits, G., & Berruti, F. (2022). Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use and Management, 38(1), 94-120. https://doi.org/10.1111/sum.12762 DOI: https://doi.org/10.1111/sum.12762

Bhimani, A. A., Bhimani, H. D., Vaghela, N. R., & Gohel, S. D. (2024). Cultivation methods, characterization, and biocatalytic potential of organic solid waste degrading bacteria isolated from sugarcane rhizospheric soil and compost. Biologia, 79(3), 953-974. https://doi.org/10.1007/s11756-023-01592-3 DOI: https://doi.org/10.1007/s11756-023-01592-3

Boiu-Sicuia, O.-A., Stan, V., & Cornea, C. P. (2021). The compost, a source of plant beneficial bacteria with biocontrol potential. Current Trends in Natural Sciences, 10(20), 32-38. https://doi.org/10.47068/ctns.2021.v10i20.004 DOI: https://doi.org/10.47068/ctns.2021.v10i20.004

Buol, S. W., Southard, R. J., Graham, R. C., & McDaniel, P. A. (2011). Soil Genesis and Classification. Wiley. https://doi.org/10.1002/9780470960622 DOI: https://doi.org/10.1002/9780470960622

Buzón-Durán, L., Pérez-Lebeña, E., Martín-Gil, J., Sánchez-Báscones, M., & Martín-Ramos, P. (2020). Applications of Streptomyces spp. Enhanced Compost in Sustainable Agriculture. In M. Meghvansi & A. Varma (eds.), Biology of Composts. Soil Biology (Vol. 58, pp. 257-291). Springer. https://doi.org/10.1007/978-3-030-39173-7_13 DOI: https://doi.org/10.1007/978-3-030-39173-7_13

Carpio, M. J., Sánchez-Martín, M. J., Rodríguez-Cruz, M. S., & Marín-Benito, J. M. (2021). Effect of organic residues on pesticide behavior in soils: a review of laboratory research. Environments, 8(4), 32. https://doi.org/10.3390/environments8040032 DOI: https://doi.org/10.3390/environments8040032

Castrejón-Godínez, M. L., Tovar-Sánchez, E., Valencia-Cuevas, L., Rosas-Ramírez, M. E., Rodríguez, A., & Mussali-Galante, P. (2021). Glyphosate pollution treatment and microbial degradation alternatives, a review. Microorganisms, 9(11), 2322. https://doi.org/10.3390/microorganisms9112322 DOI: https://doi.org/10.3390/microorganisms9112322

Chen, L., Zhang, H., Jia, X., Fang, Y., & Lin, C. (2024). Soil fertility and bacterial community composition in response to the composting of biochar-amended chicken manure. Agronomy, 14(5), 886. https://doi.org/10.3390/agronomy14050886 DOI: https://doi.org/10.3390/agronomy14050886

Cheng, M., Chen, D., Parales, R. E., & Jiang, J. (2022). Oxygenases as powerful weapons in the microbial degradation of pesticides. Annual Review of Microbiology, 76(1), 325-348. https://doi.org/10.1146/annurev-micro-041320-091758 DOI: https://doi.org/10.1146/annurev-micro-041320-091758

Chopkova, V., Petkova, M., & Shilev, S. (2023). Uncovering bacterial diversity during mesophilic and thermophilic phases of biowaste composting through next-generation sequencing. Applied Sciences, 13(5), 3111. https://doi.org/10.3390/app13053111 DOI: https://doi.org/10.3390/app13053111

Chorolque, A., Pellejero, G., Sosa, M. C., Palacios, J., Aschkar, G., García-Delgado, C., & Jiménez-Ballesta, R. (2021). Biological control of soil-borne phytopathogenic fungi through onion waste composting: implications for circular economy perspective. International Journal of Environmental Science and Technology, 19(7), 6411-6420. https://doi.org/10.1007/s13762-021-03561-2 DOI: https://doi.org/10.1007/s13762-021-03561-2

Conde-Avila, V., Ortega-Martínez, L. D., Loera, O., el Kassis, E. G., Dávila, J. G., Valenzuela, C. M., & Armendáriz, B. P. (2021). Pesticides degradation by immobilised microorganisms. International Journal of Environmental Analytical Chemistry, 101(15), 2975-3005. https://doi.org/10.1080/03067319.2020.1715375 DOI: https://doi.org/10.1080/03067319.2020.1715375

Correa, L. O., Bezerra, A. F. M., Honorato, L. R. S., Cortêz, A. C. A., Souza, J. V. B., & Souza, E. S. (2021). Amazonian soil fungi are efficient degraders of glyphosate herbicide; novel isolates of Penicillium, Aspergillus, and Trichoderma. Brazilian Journal of Biology, 83, e242830. https://doi.org/10.1590/1519-6984.242830 DOI: https://doi.org/10.1590/1519-6984.242830

Ćwiertniewicz-Wojciechowska, M., Ślipko, K., Banach-Wiśniewska, A., & Ziembińska-Buczyńska, A. (2023). Influence of the autochthonous cellulolytic bacteria on the domestic compost process improvement. BioTechnologia, 104(1), 5-20. https://doi.org/10.5114/bta.2023.125082 DOI: https://doi.org/10.5114/bta.2023.125082

Danish, S. A., Haq, T., Liaqat, I., Rubab, S., Qureshi, M., & Zafar, U. (2021). Succession and Catabolic Properties of Fungal Community During Composting of Fruit Waste at Sub-Tropical Environment. https://doi.org/10.21203/rs.3.rs-704507/v1 DOI: https://doi.org/10.21203/rs.3.rs-704507/v1

Dar, M. A., Shahnawaz, M., Hussain, K., Gupta, P., Sirwal, M. Y., Sadaqat, B., Gazal, S., Akhtar, R., Parihar, S., Zhu, D., Adetunji, C. O., Fardos, T., Parihar, J., Omorefosa, O. O., Xie, R., & Sun, J. (2023). Natural compounds for bioremediation and biodegradation of pesticides. In S. N. Meena, V. Nandre, K. Kodam, & R. S. Meena (eds.), New Horizons in Natural Compound Research (pp. 445-488). Academic Press. https://doi.org/10.1016/B978-0-443-15232-0.00015-1 DOI: https://doi.org/10.1016/B978-0-443-15232-0.00015-1

Das, P., Singh, S. K., Singh, P., Zeyad, M. T., Aamir, M., & Upadhyay, R. S. (2021). Actinomycetes as biostimulants and their application in agricultural practices. In J. White, A. Kumar, & S. Droby (eds.), Microbiome stimulants for crops (pp. 267-282). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822122-8.00021-2 DOI: https://doi.org/10.1016/B978-0-12-822122-8.00021-2

de Corato, U. (2020). Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere, 13, 100192. https://doi.org/10.1016/j.rhisph.2020.100192 DOI: https://doi.org/10.1016/j.rhisph.2020.100192

de Sousa, T., Hébraud, M., Dapkevicius, M. L. N. E., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and metabolic characteristics of the pathogenicity in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 22(23), 12892. https://doi.org/10.3390/ijms222312892 DOI: https://doi.org/10.3390/ijms222312892

Durán-Lara, E. F., Valderrama, A., & Marican, A. (2020). Natural organic compounds for application in organic farming. Agriculture, 10(2), 41. https://doi.org/10.3390/agriculture10020041 DOI: https://doi.org/10.3390/agriculture10020041

Esikova, T. Z., Anokhina, T. O., Suzina, N. E., Shushkova, T. V., Wu, Y., & Solyanikova, I. P. (2023). Characterization of a new Pseudomonas putida strain Ch2, a degrader of toxic anthropogenic compounds epsilon-caprolactam and glyphosate. Microorganisms, 11(3), 650. https://doi.org/10.3390/microorganisms11030650 DOI: https://doi.org/10.3390/microorganisms11030650

Esimbekova, E. N., Kalyabina, V. P., Kopylova, K. v., Lonshakova-Mukina, V. I., Antashkevich, A. A., Torgashina, I. G., Lukyanenko, K. A., & Kratasyuk, V. A. (2022). The effects of commercial pesticide formulations on the function of in vitro and in vivo assay systems: A comparative analysis. Chemosensors, 10(8), 328. https://doi.org/10.3390/chemosensors10080328 DOI: https://doi.org/10.3390/chemosensors10080328

Esparza-Naranjo, S. B., da Silva, G. F., Duque-Castaño, D. C., Araújo, W. L., Peres, C. K., Boroski, M., & Bonugli-Santos, R. C. (2021). Potential for the biodegradation of atrazine using leaf litter fungi from a subtropical protection area. Current Microbiology, 78, 358-368. https://doi.org/10.1007/s00284-020-02288-6 DOI: https://doi.org/10.1007/s00284-020-02288-6

Fauriah, R., Amin, N., Daud, I. D., & Harsanti, E. S. (2021). The potential of endophytic fungi as biodegradation of chlorpyrifos in shallots. IOP Conference Series: Earth and Environmental Science, 807(3), 032058. https://doi.org/10.1088/1755-1315/807/3/032058 DOI: https://doi.org/10.1088/1755-1315/807/3/032058

Fischer, G., & Dott, W. (2002). Quality assurance and good laboratory practice in the mycological laboratory – compilation of basic techniques for the identification of fungi. International Journal of Hygiene and Environmental Health, 205(6), 433-442. https://doi.org/10.1078/1438-4639-00190 DOI: https://doi.org/10.1078/1438-4639-00190

Fuchs, B., Laihonen, M., Muola, A., Saikkonen, K., Dobrev, P. I., Vankova, R., & Helander, M. (2022). A glyphosate-based herbicide in soil differentially affects hormonal homeostasis and performance of non-target crop plants. Frontiers in Plant Science, 12, 787958. https://doi.org/10.3389/fpls.2021.787958 DOI: https://doi.org/10.3389/fpls.2021.787958

Girard, L., Lood, C., Höfte, M., Vandamme, P., Rokni-Zadeh, H., van Noort, V., Lavigne, R., & de Mot, R. (2021). The ever-expanding pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms, 9(8), 1766. https://doi.org/10.3390/microorganisms9081766 DOI: https://doi.org/10.3390/microorganisms9081766

Grgas, D., Rukavina, M., Bešlo, D., Štefanac, T., Crnek, V., Šikić, T., Habuda-Stanić, M., & Landeka Dragičević, T. (2023). The Bacterial Degradation of Lignin—A Review. Water, 15(7), 1272. https://doi.org/10.3390/w15071272 DOI: https://doi.org/10.3390/w15071272

Grigorova-Pesheva, B., Malcheva, B., & Peshev, a. (2024). Microbial community dynamics of compost mixtures after application of microbiological additive. Scientific Papers. Series A. Agronomy, 67(1), 1. https://www.agronomyjournal.usamv.ro/index.php/scientific-papers/current?id=1723

Guerrero Ramírez, J. R., Ibarra Muñoz, L. A., Balagurusamy, N., Frías Ramírez, J. E., Alfaro Hernández, L., & Carrillo Campos, J. (2023). Microbiology and Biochemistry of Pesticides Biodegradation. International Journal of Molecular Sciences, 24(21), 15969. https://doi.org/10.3390/ijms242115969 DOI: https://doi.org/10.3390/ijms242115969

Harrigan, W. F., & McCance, M. E. (2014). Laboratory methods in microbiology. Academic press.

Hernández-Mesa, M., & Moreno-González, D. (2022). Current role of mass spectrometry in the determination of pesticide residues in food. Separations, 9(6), 148. https://doi.org/10.3390/separations9060148 DOI: https://doi.org/10.3390/separations9060148

Huang, P., Yan, X., Yu, B., He, X., Lu, L., & Ren, Y. (2023). A comprehensive review of the current knowledge of chlorfenapyr: synthesis, mode of action, resistance, and environmental toxicology. Molecules, 28(22), 7673. https://doi.org/10.3390/molecules28227673 DOI: https://doi.org/10.3390/molecules28227673

Ibrahim, I. A. J., & Hameed, T. A. K. (2015). Isolation, characterization and antimicrobial resistance patterns of lactose-fermenter enterobacteriaceae isolates from clinical and environmental samples. Open Journal of Medical Microbiology, 5(04), 169-176. http://dx.doi.org/10.4236/ojmm.2015.54021 DOI: https://doi.org/10.4236/ojmm.2015.54021

Jakubus, M., & Michalak-Oparowska, W. (2022). Valorization of quality of vermicomposts and composts using various parameters. Agriculture, 12(2), 293. https://doi.org/10.3390/agriculture12020293 DOI: https://doi.org/10.3390/agriculture12020293

Jeong, D. K., Lee, H. J., Bae, J. Y., Jang, Y. S., Hong, S. M., & Kim, J. H. (2019). Chlorfenapyr residue in sweet persimmon from farm to table. Journal of food protection, 82(5), 810-814. https://doi.org/10.4315/0362-028X.JFP-18-503 DOI: https://doi.org/10.4315/0362-028X.JFP-18-503

Kannan, R., & Kallapiran, K. A. (2022). A Review on the Agricultural Waste Residues Management by Different Microbes. Journal of Agriculture and Ecology Research International, 23(6), 93-113. https://doi.org/10.9734/jaeri/2022/v23i6502 DOI: https://doi.org/10.9734/jaeri/2022/v23i6502

Khazal, S. S., & Suhail, F. M. (2022). Study of the analysis of microbial dusting pesticides caused by Pseudomonas bacteria and Trichoderma fungi. International Journal of Mechanical Engineering, 7(2), 1755-1315. https://kalaharijournals.com/resources/FebV7_I2_375%20(1).pdf

Kraut-Cohen, J., Zolti, A., Rotbart, N., Bar-Tal, A., Laor, Y., Medina, S., Shawahna, R., Saadi, I., Raviv, M., Green, S. J., Yermiyahu, U., & Minz, D. (2023). Short- and long-term effects of continuous compost amendment on soil microbiome community. Computational and Structural Biotechnology Journal, 21, 3280-3292. https://doi.org/10.1016/j.csbj.2023.05.030 DOI: https://doi.org/10.1016/j.csbj.2023.05.030

Kumar, R. R., & Jadeja, V. J. (2016). Isolation of Actinomycetes: A Complete Approach. International Journal of Current Microbiology and Applied Sciences, 5(5), 606-618. https://doi.org/10.20546/ijcmas.2016.505.062 DOI: https://doi.org/10.20546/ijcmas.2016.505.062

Kunanbayev, K., Churkinа, G., Rukavitsina, I., Filippova, N., & Utebayev, M. (2019). Potential attractiveness of soil fungus Trichoderma inhamatum for biodegradation of the glyphosate herbicide. Journal of Ecological Engineering, 20(11), 240-245. https://doi.org/10.12911/22998993/113580 DOI: https://doi.org/10.12911/22998993/113580

Kurakov, A. V., & Bilanenko, E. N. (2023). Dynamics of mycobiota during composting of cow manure and straw. Eurasian Soil Science, 56(4), 453-469. https://doi.org/10.1134/S1064229322602554 DOI: https://doi.org/10.1134/S1064229322602554

Lakshmanan, R., Kalaimurugan, D., Sivasankar, P., Arokiyaraj, S., & Venkatesan, S. (2020). Identification and characterization of Pseudomonas aeruginosa derived bacteriocin for industrial applications. International Journal of Biological Macromolecules, 165, 2412-2418. https://doi.org/10.1016/j.ijbiomac.2020.10.126 DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.126

Lau, Y. Y., Hernandes, E., Kristanti, R. A., Wijayanti, Y., & Emre, M. (2023). Exploring the potential of composting for bioremediation of pesticides in agricultural sector. Industrial and Domestic Waste Management, 3(1), 47-66. https://doi.org/10.53623/idwm.v3i1.245 DOI: https://doi.org/10.53623/idwm.v3i1.245

Leskovac, A., & Petrović, S. (2023). Pesticide use and degradation strategies: food safety, challenges and perspectives. Foods, 12(14), 2709. https://doi.org/10.3390/foods12142709 DOI: https://doi.org/10.3390/foods12142709

Liu, F., Wang, Y., Chen, L., Bello, B. K., Zhang, T., Yang, H., Li, X., Pan, E., Feng, H., & Dong, J. (2022). Difenoconazole disrupts the blood-brain barrier and results in neurotoxicity in carp by inhibiting the Nrf2 pathway mediated ROS accumulation. Ecotoxicology and Environmental Safety, 244, 114081. https://doi.org/10.1016/j.ecoenv.2022.114081 DOI: https://doi.org/10.1016/j.ecoenv.2022.114081

Liu, G., Yang, Y., Ma, R., Jiang, J., Li, G., Wang, J., Wuyun, D., & Yuan, J. (2023). Thermophilic compost inoculating promoted the maturity and mature compost inoculating reduced the gaseous emissions during co-composting of kitchen waste and pig manure. Environmental Technology & Innovation, 32, 103427. https://doi.org/10.1016/j.eti.2023.103427 DOI: https://doi.org/10.1016/j.eti.2023.103427

Liu, Y., Cheng, D., Xue, J., Weaver, L., Wakelin, S. A., Feng, Y., & Li, Z. (2020). Changes in microbial community structure during pig manure composting and its relationship to the fate of antibiotics and antibiotic resistance genes. Journal of Hazardous Materials, 389, 122082. https://doi.org/10.1016/j.jhazmat.2020.122082 DOI: https://doi.org/10.1016/j.jhazmat.2020.122082

Lv, Z., Tao, C., Zhang, J., Shen, Z., Wang, D., Wang, B., Liu, H., & Li, R. (2023). Moderately delayed maturation of composting promotes the reduction of guild-plant pathogenic fungi within vegetable waste. Research Square. https://doi.org/10.21203/rs.3.rs-3032959/v1 DOI: https://doi.org/10.21203/rs.3.rs-3032959/v1

Maleki, M., Mostafaee, S., Mokhtarnejad, L., & Farzaneh, M. (2010). Characterization of Pseudomonas fluorescens strain CV6 isolated from cucumber rhizosphere in Varamin as a potential biocontrol agent. Australian Journal of Crop Science, 4(9), 676-683. https://www.cropj.com/maleki_4_9_2010_676_683.pdf

Man, Y., Stenrød, M., Wu, C., Almvik, M., Holten, R., Clarke, J. L., Yuan, S., Wu, X., Xu, J., Dong, F., Zheng, Y., & Liu, X. (2021). Degradation of difenoconazole in water and soil: Kinetics, degradation pathways, transformation products identification and ecotoxicity assessment. Journal of Hazardous Materials, 418, 126303. https://doi.org/10.1016/j.jhazmat.2021.126303 DOI: https://doi.org/10.1016/j.jhazmat.2021.126303

Mashi, B. H. (2018). Antibiotic Susceptibility Patterns of Pseudomonas spp. Isolated from Soil Samples. UMYU Journal of Microbiology Research (UJMR), 3(2), 27-31. https://doi.org/10.47430/ujmr.1832.005 DOI: https://doi.org/10.47430/ujmr.1832.005

Matúš, P., Littera, P., Farkas, B., & Urík, M. (2023). Review on performance of Aspergillus and Penicillium species in biodegradation of organochlorine and organophosphorus pesticides. Microorganisms, 11(6), 1485. https://doi.org/10.3390/microorganisms11061485 DOI: https://doi.org/10.3390/microorganisms11061485

Mehta, J. S., & Jadeja, B. A. (2022). Biochemical and physiological characterization of actinomycetes isolated from rhizospheric regions in the soils of Arachis hypogea L. and Gossypium herbaceum L. near the Gir Wildlife Sanctuary. Journal of Pharmaceutical Negative Results, 13(8), 267-273. https://doi.org/10.47750/pnr.2022.13.S08.40 DOI: https://doi.org/10.47750/pnr.2022.13.S08.40

Meng, Q., Yang, W., Men, M., Bello, A., Xu, X., Xu, B., Deng, L., Jiang, X., Sheng, S., Wu, X., Han, Y., & Zhu, H. (2019). Microbial community succession and response to environmental variables during cow manure and corn straw composting. Frontiers in Microbiology, 10, 529. https://doi.org/10.3389/fmicb.2019.00529 DOI: https://doi.org/10.3389/fmicb.2019.00529

Midhat, M. S., & Abed, S. M. (2023). Isolation and identification of pathogenic species of the genus Pseudomonas and study of antibiotic resistance. GSC Biological and Pharmaceutical Sciences, 23(1), 087-098. https://doi.org/10.30574/gscbps.2023.23.1.0144 DOI: https://doi.org/10.30574/gscbps.2023.23.1.0144

Mohammad, A. O., Alkurtany, A. E., & Hassan, A. A. (2020). Evaluation of API 20E system in fluorescent Pseudomonas identification from button mushroom Agaricus bisporus cultivation casing soil. Notulae Scientia Biologicae, 12(2), 258-263. http://dx.doi.org/10.15835/nsb12210628 DOI: https://doi.org/10.15835/nsb12210628

Mohapatra, D., Rath, S. K., & Mohapatra, P. K. (2022). Soil fungi for bioremediation of pesticide toxicants: A perspective. Geomicrobiology Journal, 39(3-5), 352-372. https://doi.org/10.1080/01490451.2021.2019855 DOI: https://doi.org/10.1080/01490451.2021.2019855

Mustapha, M. U., Halimoon, N., Johar, W. L. W., & Abd Shukor, M. Y. (2019). An overview on biodegradation of carbamate pesticides by soil bacteria. Pertanika Journal of Science & Technology, 27(2), 547-563. http://psasir.upm.edu.my/id/eprint/68692/

Naeem, U., Afzaal, M., Haq, I. ul, Qazi, A., Naeem, A., & Mahfooz, Y. (2022). A Comparative Role of Competent Microbes for Value-added Composting of Agricultural Waste. Research Square. https://doi.org/10.21203/rs.3.rs-2087247/v1 DOI: https://doi.org/10.21203/rs.3.rs-2087247/v1

Narsing Rao, M. P., & Li, W. J. (2022). Diversity of Actinobacteria in various habitats. In L. Karthik (ed.), Actinobacteria: Microbiology to Synthetic Biology (pp. 37-58). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5835-8. https://doi.org/10.1007/978-981-16-5835-8_2 DOI: https://doi.org/10.1007/978-981-16-5835-8_2

Nazari, M. T., Machado, B. S., Marchezi, G., Crestani, L., Ferrari, V., Colla, L. M., & Piccin, J. S. (2022). Use of soil actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech, 12(9), 232. https://doi.org/10.1007/s13205-022-03307-y DOI: https://doi.org/10.1007/s13205-022-03307-y

Nazem Shirazi, M. H., Soltani Majd, N., & Khodayari, M. (2023). Molecular and Biochemical Characterization of Pseudomonas aeruginosa Isolated from a Turkey Flock. Journal of Poultry Sciences and Avian Diseases, 1(2), 42-46. https://doi.org/10.61838/kman.jpsad.1.2.6 DOI: https://doi.org/10.61838/kman.jpsad.1.2.6

O'hara, C. M. (2005). Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gram-negative bacilli. Clinical microbiology reviews, 18(1), 147-162. https://doi.org/10.1128/cmr.18.1.147-162.2005 DOI: https://doi.org/10.1128/CMR.18.1.147-162.2005

Oyedoh, O. P., Yang, W., Dhanasekaran, D., Santoyo, G., Glick, B. R., & Babalola, O. O. (2023). Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnology Advances, 67, 108205. https://doi.org/10.1016/j.biotechadv.2023.108205 DOI: https://doi.org/10.1016/j.biotechadv.2023.108205

Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., Jing-Yi, L., Gunasekaran, B., & Razak, S. A. (2020). Food Waste Composting and Microbial Community Structure Profiling. Processes, 8(6), 723. https://doi.org/10.3390/pr8060723 DOI: https://doi.org/10.3390/pr8060723

Pant, R., Tiwari, K., Singh, A., Srivastava, S., Patrick, N., & Gupta, A. (2022). Screening, Isolation and characterization of Soil microbes at the banks of the Song River. Bulletin of Environment, Pharmacology and Life Sciences, 12(1), 141-148. https://bepls.com/dec_2022/20.pdf

Parra-Arroyo, L., González-González, R. B., Castillo-Zacarías, C., Melchor Martínez, E. M., Sosa-Hernández, J. E., Bilal, M., Iqbal, H. M. N., Barceló, D., & Parra-Saldívar, R. (2022). Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. Science of The Total Environment, 807, 151879. https://doi.org/10.1016/j.scitotenv.2021.151879 DOI: https://doi.org/10.1016/j.scitotenv.2021.151879

Peillex, C., & Pelletier, M. (2020). The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. Journal of immunotoxicology, 17(1), 163-174. https://doi.org/10.1080/1547691X.2020.1804492 DOI: https://doi.org/10.1080/1547691X.2020.1804492

Pérez-Corral, D. A., Ornelas-Paz, J. de J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Salas-Marina, M. Á., Berlanga-Reyes, D. I., Ruiz-Cisneros, M. F., & Rios-Velasco, C. (2022). Molecular, morphological and biochemical characterization of actinomycetes and their antagonistic activity against phytopathogenic fungi. Revista Fitotecnia Mexicana, 45(1), 103. https://doi.org/10.35196/rfm.2022.1.103 DOI: https://doi.org/10.35196/rfm.2022.1.103

Pizzul, L., Castillo, M. D. P., & Stenström, J. (2009). Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation, 20, 751-759. https://doi.org/10.1007/s10532-009-9263-1 DOI: https://doi.org/10.1007/s10532-009-9263-1

Qin, G., Chen, Y., He, F., Yang, B., Zou, K., Shen, N., Zuo, B., Liu, R., Zhang, W., & Li, Y. (2021). Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China. Journal of Food Composition and Analysis, 95, 103663. https://doi.org/10.1016/j.jfca.2020.103663 DOI: https://doi.org/10.1016/j.jfca.2020.103663

Raffa, C. M., & Chiampo, F. (2021). Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering, 8(7), 92. https://doi.org/10.3390/bioengineering8070092 DOI: https://doi.org/10.3390/bioengineering8070092

Rafieenia, R., Mahmoud, M., El-Gohary, F., & Rossa, C. A. (2022). The degradation of glyphosate is enhanced in a microbial fuel cell: Electrochemical performance, degradation efficiency, and analysis of the anodic microbial community. Sustainable Energy Technologies and Assessments, 54, 102805. https://doi.org/10.1016/j.seta.2022.102805 DOI: https://doi.org/10.1016/j.seta.2022.102805

Randika, J. L. P. C., Bandara, P. K. G. S. S., Soysa, H. S. M., Ruwandeepika, H. A. D., & Gunatilake, S. K. (2022). Bioremediation of pesticide-contaminated soil: a review on indispensable role of soil bacteria. Journal of Agricultural Sciences – Sri Lanka, 17(1), 19-43. https://doi.org/10.4038/jas.v17i1.9609 DOI: https://doi.org/10.4038/jas.v17i1.9609

Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301 DOI: https://doi.org/10.1016/j.ceja.2022.100301

Rastogi, M., Nandal, M., & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon, 6(2), e03343. https://doi.org/10.1016/j.heliyon.2020.e03343 DOI: https://doi.org/10.1016/j.heliyon.2020.e03343

Riedo, J., Wächter, D., Gubler, A., Wettstein, F. E., Meuli, R. G., & Bucheli, T. D. (2023). Pesticide residues in agricultural soils in light of their on-farm application history. Environmental Pollution, 331, 121892. https://doi.org/10.1016/j.envpol.2023.121892 DOI: https://doi.org/10.1016/j.envpol.2023.121892

Rigolin, F. R., Leite, C. A., Birolli, W. G., Porto, A. L., & Seleghim, M. H. (2024). Biodegradation of the pyrethroid pesticide gamma-cyhalothrin by fungi from a Brazilian cave. Journal of the Brazilian Chemical Society, 35, e-20240026. https://dx.doi.org/10.21577/0103-5053.20240026 DOI: https://doi.org/10.21577/0103-5053.20240026

Rodríguez, A., Castrejón-Godínez, M. L., Salazar-Bustamante, E., Gama-Martínez, Y., Sánchez-Salinas, E., Mussali-Galante, P., Tovar-Sánchez, E., & Ortiz-Hernández, Ma. L. (2020). Omics Approaches to Pesticide Biodegradation. Current Microbiology, 77(4), 545–563. https://doi.org/10.1007/s00284-020-01916-5 DOI: https://doi.org/10.1007/s00284-020-01916-5

Rodríguez, C. A., Gavilánez, T. C., Chamorro, J. P., Vinueza, A. G., Salazar, D. M., & Arancibia, M. Y. (2018). Selective Isolation and Phenotypic Characterization of Bacteria and Actinomycetes from Oil-contaminated Soils. IOP Conference Series: Earth and Environmental Science, 151, 012039. https://doi.org/10.1088/1755-1315/151/1/012039 DOI: https://doi.org/10.1088/1755-1315/151/1/012039

Rodríguez-Fonseca, M. F., Sánchez-Suárez, J., Valero, M. F., Ruiz-Balaguera, S., & Díaz, L. E. (2021). Streptomyces as potential synthetic polymer degraders: A systematic review. Bioengineering, 8(11), 154. https://doi.org/10.3390/bioengineering8110154 DOI: https://doi.org/10.3390/bioengineering8110154

Rossi, F., Carles, L., Donnadieu, F., Batisson, I., & Artigas, J. (2021). Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal of Hazardous Materials, 420, 126651. https://doi.org/10.1016/j.jhazmat.2021.126651 DOI: https://doi.org/10.1016/j.jhazmat.2021.126651

Ruiz-Hernandez, I. H., Madrigal-Perez, L. A., & González-Hernández, J. C. (2024). The potential use of Pseudomonas in terrestrial and space agriculture. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.282664 DOI: https://doi.org/10.1590/1519-6984.282664

Ruomeng, B., Meihao, O., Siru, Z., Shichen, G., Yixian, Z., Junhong, C., Ruijie, M., Yuan, L., Gezhi, X., Xingyu, C., Shiyi, Z., Aihui, Z., & Baishan, F. (2023). Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synthetic and Systems Biotechnology, 8(2), 302-313. https://doi.org/10.1016/j.synbio.2023.03.005 DOI: https://doi.org/10.1016/j.synbio.2023.03.005

Salazar Calvo, C., Moya García, A., González Venegas, J. P., Rodríguez Díaz, H., & Corrales Valverde, D. (2020). Comparación de dos métodos de muestreo para el análisis de fertilidad de suelos. Alcances Tecnológicos, 13(1), 31–39. https://doi.org/10.35486/at.v13i1.168 DOI: https://doi.org/10.35486/at.v13i1.168

Salem, G. S., Baiu, S. H., & Ali, A. A. (2023). Isolation, examination and characterization of actinomycetes as a source of antimicrobial agents from Libyan soil. Advances in Bioscience and Biotechnology, 14(6), 322-336. https://doi.org/10.4236/abb.2023.146020 DOI: https://doi.org/10.4236/abb.2023.146020

Sapkota, A., Thapa, A., Budhathoki, A., Sainju, M., Shrestha, P., & Aryal, S. (2020). Isolation, Characterization, and Screening of Antimicrobial-Producing Actinomycetes from Soil Samples. International Journal of Microbiology, 2020, 2716584. https://doi.org/10.1155/2020/2716584 DOI: https://doi.org/10.1155/2020/2716584

Schaeffer, A., & Wijntjes, C. (2022). Changed degradation behavior of pesticides when present in mixtures. Eco-Environment & Health, 1(1), 23-30. https://doi.org/10.1016/j.eehl.2022.02.002 DOI: https://doi.org/10.1016/j.eehl.2022.02.002

Shahid, M., Manoharadas, S., Altaf, M., & Alrefaei, A. F. (2021). Organochlorine pesticides negatively influenced the cellular growth, morphostructure, cell viability, and biofilm-formation and phosphate-solubilization activities of Enterobacter cloacae strain EAM 35. ACS omega, 6(8), 5548-5559. https://doi.org/10.1021/acsomega.0c05931 DOI: https://doi.org/10.1021/acsomega.0c05931

Shalaby, A. A., Rahman, A. E., & Shalaby, M. A. (2022). Study of Imidacloprid, Azoxystrobin and Difenoconazole Residues and their Biochemical effects on Cucumber. Journal of Plant Protection and Pathology, 13(7), 161-167. https://dx.doi.org/10.21608/jppp.2022.148665.1085 DOI: https://doi.org/10.21608/jppp.2022.148665.1085

Sharma, I. (2021). Phytopathogenic fungi and their biocontrol applications. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology (pp. 155-188). Academic Press. https://doi.org/10.1016/B978-0-12-821394-0.00007-X DOI: https://doi.org/10.1016/B978-0-12-821394-0.00007-X

Singh, B., Bhadu, A., Sharma, J., Ali, O., Neogi, S., Gunri, S. K., & Roy, D. (2022). Effect of microbes in enhancing the composting process: a review. International Journal of Plant & Soil Science, 34(23), 630-641. https://doi.org/10.9734/ijpss/2022/v34i232469 DOI: https://doi.org/10.9734/ijpss/2022/v34i232469

Singh, R., Shukla, A., Kaur, G., Girdhar, M., Malik, T., & Mohan, A. (2024). Systemic analysis of glyphosate impact on environment and human health. ACS Omega, 9(6), 6165-6183. https://doi.org/10.1021/acsomega.3c08080 DOI: https://doi.org/10.1021/acsomega.3c08080

Singh, S., Kumar, V., Gill, J. P. K., Datta, S., Singh, S., Dhaka, V., Kapoor, D., Wani, A. B., Dhanjal, D. S., Kumar, M., Harikumar, S. L., & Singh, J. (2020). Herbicide glyphosate: Toxicity and microbial degradation. International Journal of Environmental Research and Public Health, 17(20), 7519. https://doi.org/10.3390/ijerph17207519 DOI: https://doi.org/10.3390/ijerph17207519

Singh, T. B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., & Dantu, P. K. (2020b). Role of organic fertilizers in improving soil fertility. In M. Naeem, A. A. Ansari, & S. S. Gill (eds.), Contaminants in Agriculture: Sources, Impacts and Management (pp. 61-77). Springer International Publishing. https://doi.org/10.1007/978-3-030-41552-5_3 DOI: https://doi.org/10.1007/978-3-030-41552-5_3

Singh, Y. P., Arora, S., Mishra, V. K., Gupta, R. H., & Mishra, S. J. (2023). Changes in physicochemical and microbial properties during standardization of on-farm composting of municipal solid waste. Journal of Natural Resource Conservation and Management, 4(1), 40-49. https://10.51396/ANRCM.4.1.2023.40-49 DOI: https://doi.org/10.51396/ANRCM.4.1.2023.40-49

Srinivasulu, M., Maddela, N. R., Chandra, M. S., Shankar, P. C., Rangaswamy, V., & Prasad, R. (2024). Microbe-pesticide interactions: Soil enzyme analysis and bacterial degradation of chlorpyrifos. Environmental Chemistry and Ecotoxicology, 6, 180-191. https://doi.org/10.1016/j.enceco.2024.05.004 DOI: https://doi.org/10.1016/j.enceco.2024.05.004

Sun, J., Karuppiah, V., & Chen, J. (2020). The mechanism of heavy metal absorption and biodegradation of organophosphorus pesticides by Trichoderma. In V. K. Gupta, S. Zeilinger, H. B. Singh, & I. Druzhinina (eds.), New and future developments in microbial biotechnology and bioengineering (pp. 303-318). Elsevier. https://doi.org/10.1016/B978-0-12-819453-9.00014-3 DOI: https://doi.org/10.1016/B978-0-12-819453-9.00014-3

Sun, M., Yi, X., Tong, Z., Dong, X., Chu, Y., Meng, D., & Duan, J. (2023). Residual behavior and dietary risk assessment of chlorfenapyr and its metabolites in radish. Molecules, 28(2), 580. https://doi.org/10.3390/molecules28020580 DOI: https://doi.org/10.3390/molecules28020580

Tawfik Ali ElHaty, M., Ibrahim, M., & Mansour, M. (2022). Effectiveness of pesticides on soil fungal Biota and role of these fungi in bioremediation of pesticides residues. Alfarama Journal of Basic & Applied Sciences, 3(2), 239-252. https://doi.org/10.21608/ajbas.2022.118868.1086 DOI: https://doi.org/10.21608/ajbas.2022.118868.1086

Torres-Rodriguez, J. A., Reyes-Pérez, J. J., Quiñones-Aguilar, E. E., & Hernandez-Montiel, L. G. (2022). Actinomycete potential as biocontrol agent of phytopathogenic fungi: mechanisms, source, and applications. Plants, 11(23), 3201. https://doi.org/10.3390/plants11233201 DOI: https://doi.org/10.3390/plants11233201

Valle, A. L., Mello, F. C. C., Alves-Balvedi, R. P., Rodrigues, L. P., & Goulart, L. R. (2019). Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters, 17(1), 291-317. https://doi.org/10.1007/s10311-018-0789-5 DOI: https://doi.org/10.1007/s10311-018-0789-5

Van Gijn, K., Chen, Y. L., Van Oudheusden, B., Gong, S., De Wilt, H. A., Rijnaarts, H. H. M., & Langenhoff, A. A. M. (2021). Optimizing biological effluent organic matter removal for subsequent micropollutant removal. Journal of Environmental Chemical Engineering, 9(5), 106247. https://doi.org/10.1016/j.jece.2021.106247 DOI: https://doi.org/10.1016/j.jece.2021.106247

Wang, K., Sun, D. W., Pu, H., & Wei, Q. (2019). Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta, 191, 449-456. https://doi.org/10.1016/j.talanta.2018.08.005 DOI: https://doi.org/10.1016/j.talanta.2018.08.005

Wang, W., Peng, G., Sun, Y., & Chen, X. (2024). Increasing the tolerance of Trichoderma harzianum T-22 to DMI fungicides enables the combined utilization of biological and chemical control strategies against plant diseases. Biological Control, 192, 105479. https://doi.org/10.1016/j.biocontrol.2024.105479 DOI: https://doi.org/10.1016/j.biocontrol.2024.105479

Wellington, E. M. H., & Toth, I. K. (1994). Actinomycetes. In R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai & A. Wollum (eds.), Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties, 5 (pp. 269-290). https://doi.org/10.2136/sssabookser5.2.c15 DOI: https://doi.org/10.2136/sssabookser5.2.c15

Williams, S. T., & Cross, T. (1971). Chapter XI actinomycetes. In Methods in microbiology (pp. 295-334). Academic Press. https://doi.org/10.1016/S0580-9517(09)70016-9 DOI: https://doi.org/10.1016/S0580-9517(09)70016-9

Wu, P., Zhao, R., Zhang, X., Niu, T., Cao, B., Zhu, F., Li, N., Zhang, Y., Wu, Y., & Wang, Y. (2020). Rhodopseudomonas capsulata enhances cleaning of chlorfenapyr from environment. Journal of Cleaner Production, 259, 120271. https://doi.org/10.1016/j.jclepro.2020.120271 DOI: https://doi.org/10.1016/j.jclepro.2020.120271

Xu, C., Cui, D., Lv, X., Zhong, G., & Liu, J. (2023). Heterogeneous distribution of carbofuran shaped by Pseudomonas stutzeri biofilms enhances biodegradation of agrochemicals. Environmental Research, 229, 115894. https://doi.org/10.1016/j.envres.2023.115894 DOI: https://doi.org/10.1016/j.envres.2023.115894

Xu, J., Smith, S., Smith, G., Wang, W., & Li, Y. (2019). Glyphosate contamination in grains and foods: An overview. Food Control, 106, 106710. https://www.sciencedirect.com/science/article/pii/S0956713519302919 DOI: https://doi.org/10.1016/j.foodcont.2019.106710

Xu, P., Shu, L., Yang, Y., Kumar, S., Tripathi, P., Mishra, S., Qiu, C., Li, Y., Wu, Y., & Yang, Z. (2024). Microbial agents obtained from tomato straw composting effectively promote tomato straw compost maturation and improve compost quality. Ecotoxicology and Environmental Safety, 270, 115884. https://doi.org/10.1016/j.ecoenv.2023.115884 DOI: https://doi.org/10.1016/j.ecoenv.2023.115884

Yang, J., Luo, F., Zhou, L., Sun, H., Yu, H., Wang, X., Zhang, X., Yang, M., Lou, Z., & Chen, Z. (2020). Residue reduction and risk evaluation of chlorfenapyr residue in tea planting, tea processing, and tea brewing. Science of The Total Environment, 738, 139613. https://doi.org/10.1016/j.scitotenv.2020.139613 DOI: https://doi.org/10.1016/j.scitotenv.2020.139613

Zhan, Y., Chang, Y., Tao, Y., Zhang, H., Lin, Y., Deng, J., Ma, T., Ding, G., Wei, Y., & Li, J. (2022). Insight into the dynamic microbial community and core bacteria in composting from different sources by advanced bioinformatics methods. Environmental Science and Pollution Research, 30(4), 8956-8966. https://doi.org/10.1007/s11356-022-20388-7 DOI: https://doi.org/10.1007/s11356-022-20388-7

Zhang, J., Shen, C., Shang, T. H., & Liu, J. L. (2022). Difference responses of soil fungal communities to cattle and chicken manure composting application. Journal of Applied Microbiology, 133(2), 323-339. https://doi.org/10.1111/jam.15549 DOI: https://doi.org/10.1111/jam.15549

Zhao, X., Wei, Y., Fan, Y., Zhang, F., Tan, W., He, X., & Xi, B. (2018). Roles of bacterial community in the transformation of dissolved organic matter for the stability and safety of material during sludge composting. Bioresource technology, 267, 378-385. https://doi.org/10.1016/j.biortech.2018.07.060 DOI: https://doi.org/10.1016/j.biortech.2018.07.060

Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. https://doi.org/10.1016/j.aoas.2020.09.003 DOI: https://doi.org/10.1016/j.aoas.2020.09.003