Arbuscular mycorrhizal fungal (AMF) communities associated with mango cv. sugar (Mangifera indica L.) crops in Magdalena, Colombia
Main Article Content
Abstract
Arbuscular mycorrhizal fungi represent one of the most prevalent group organisms in the rhizosphere. They are present in more than 200,000 plant species. Despite their pervasive distribution in ecosystems, only 322 species have been formally described to date. The present study aimed to characterize the diversity of AMF communities in two mango-producing areas in the Magdalena Department, Colombia. To this end, the following steps were taken: (i) the identification of the morphospecies present, (ii) the comparison of communities through diversity indices, (iii) the determination of soil chemical properties, and (iv) the relationship between these properties with species richness, selected using principal component analysis (PCA). The study yielded 25 morphospecies, distributed across six families and ten genera. Of these, three key morphospecies Cetraspora pellucida, Glomus sinuosum and Gigaspora margarita were identified as the most frequent. The highest diversity values were observed in Santa Marta, with the San Pablo farm demonstrating the highest values for Shannon and Simpson indices (1,63 and 0,78, respectively), while the Las Palmeras farm exhibited the highest value for the Pielou uniformity index (0,97). This study reports, for the first time, the occurrence of AMF species associated with mango cv. sugar crops in the localities of Santa Marta and Ciénaga.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Abdelhalim, T. S., Finckh, M. R., Babiker, A. G., y Oehl, F. (2014). Species composition and diversity of arbuscular mycorrhizal fungi in White Nile state, Central Sudan. Archives of Agronomy and Soil Science, 60(3), 377-391. https://doi.org/10.1080/03650340.2013.793453
Adriano Anaya, M. L., García Ávila, M. A., Ovando Medina, I., De Gyves Córdova, M. G., y Salvador Figueroa, M. (2008). Dinámica de hongos micorrízicos arbusculares en el mango variedad Ataúlfo. Quehacer Científico en Chiapas, 1(6): 25-31. https://www.dgip.unach.mx/images/pdf-REVISTA-QUEHACERCIENTIFICO/QUEHACER-CIENTIFICO-2008-jul-dic/dinamica.pdf
Agronet, (2020). Evaluaciones Agropecuarias Municipales. Grupo de estadística e información sectorial, Oficina de Planeación y Prospectiva, Ministerio de Agricultura y Desarrollo Rural. https://www.agronet.gov.co/Paginas/inicio.aspx
Aguilar Corrales, D. A., Siachoque Bernal, R. F., Otero García, J., Páramo Rocha, G. E., García Márquez, E. R., Escobar Torres, C. H., Porras Rodríguez, P. D., Gómez Blanco, J. A., García Castellanos, L. E., Ayala Pinzón, J. D., Porras Rey, A. M., Olmos Soler, J. R., Enciso Enciso, F. C., y Acosta Latorre, C. P. (2018). Cultivo comercial de mango: identificación de zonas aptas en Colombia, a escala 1:100.000. Unidad de Planificación Rural Agropecuaria [UPRA].
Allen, E. B., Allen, M. F., Egerton-Warburton, L., Corkidi, L., y Gómez-Pompa, A. (2003). Impacts of early and late seral mycorrhizae during restoration in seasonal tropical forest, México. Ecological Applications, 13(6), 1701-1717. https://doi.org/10.1890/02-5309
Belay, Z., Vestberg, M., y Assefa, F. (2014). Mycorrhizal status and AMF community structure of fruit crops from low-input cropping system in Showa Robit, Ethiopia. Ethiopian Journal of Biological Sciences, 13(2), 99-116. https://www.ajol.info/index.php/ejbs/article/view/139802
Boddington, C. L., y Dodd, J. C. (2000). The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant and Soil, 218/2(1/2), 137-144. https://doi.org/10.1023/A:1014966801446
Brower, J. E., Zar, J. H., y von Ende, C. N. (1990). Field and laboratory methods for general ecology. W.C. Brown Publishers.
Brundrett, M. C., y Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220(4), 1108–1115. https://doi.org/10.1111/nph.14976
Brundrett, M., Melville, L., y Peterson, L. (eds.). (1994). Practical methods in mycorrhiza research. Mycologue Publications.
Chimal-Sánchez, E., Senés-Guerrero, C., Varela, L., Montaño, N. M., García-Sánchez, R., Pacheco, A., Montaño-Arias, S. A., y Camargo-Ricalde, S. L. (2020). Septoglomus mexicanum, a new species of arbuscular mycorrhizal fungi from semiarid regions in Mexico. Mycologia, 112(1), 121-132. https://doi.org/10.1080/00275514.2019.1671147
Cofré, M. N., Soteras, F., del Rosario Iglesias, M., Velázquez, S., Abarca, C., Risio, L., Ontivero, E., Cabello, M. N., Domínguez, L. S., y Lugo, M. A. (2019). Biodiversity of arbuscular mycorrhizal fungi in South America: A review. En M. C. Pagano, y M. A. Lugo (eds.), Mycorrhizal Fungi in South America (pp. 49-72). Springer Cham. https://doi.org/10.1007/978-3-030-15228-4_3
Corazon-Guivin, M. A., Cerna-Mendoza, A., Guerrero-Abad, J. C., Vallejos-Tapullima, A., Carballar-Hernández, S., da Silva, G. A., y Oehl, F. (2019). Nanoglomus plukenetiae, a new fungus from Peru, and a key to small-spored Glomeraceae species, including three new genera in the “Dominikia complex/clades.” Mycological Progress, 18(12), 1395-1409. https://doi.org/10.1007/s11557-019-01522-1
Cortés Mercado, M. M., León Arteaga, R., Ferrera-Cerrato, R., y Cruz Castillo, J. G. (1996). Endomicorrizas vesículo arbusculares del mango (Mangifera indica L.) “Manila” en el estado de Veracruz. Revista Chapingo. Serie horticultura, 2(1), 103-108. https://revistas.chapingo.mx/horticultura/phpscript/download.php?file=completo&id=MzAwMw==
De La Providencia, I. E., de Souza, F. A., Fernández, F., Delmas, N. S., y Declerck, S. (2005). Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytologist, 165(1), 261-271. https://doi.org/10.1111/j.1469-8137.2004.01236.x
de Pontes, J. S., Oehl, F., Pereira, C. D., de Toledo Machado, C. T., Coyne, D., da Silva, D. K. A., y Maia, L. C. (2017). Diversity of arbuscular mycorrhizal fungi in the Brazilian’s Cerrado and in soybean under conservation and conventional tillage. Applied Soil Ecology, 117-118, 178-189. https://doi.org/10.1016/j.apsoil.2017.04.023
de Souza, F. A., da Silva, I. R., de Barros Barreto, M. B. B., Oehl, F., Goto, B. T., & Maia, L. C. (2018). Racocetra crispa (Glomeromycotina) delimited by integrative evidence based on morphology, long continuous nuclear rDNA sequencing and phylogeny. Mycological Progress, 17(9), 999-1011. https://doi.org/10.1007/s11557-018-1410-9
FAOSTAT. (2021). Statistics. Food and Agriculture Organization Corporate Statistical Database. http://www.fao.org/statistics/en/
Gerdemann, J. W., y Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
Goto, B. T., y Jobim, K. (2024). Laboratorio de Biología de Micorrizas. https://biologiademicorrizas.wixsite.com/glomeromycota/es
Govindan, M., Rajeshkumar, P. P., Varma, C. K. Y., Anees, M. M., Rashmi, C. R., y Nair, A. B. (2020). Arbuscular mycorrhizal fungi status of mango (Mangifera indica) cultivars grown in typic quartzipsamments soil. Agricultural Research, 9(2), 188-196. https://doi.org/10.1007/s40003-019-00432-8
Jiang, S., Hu, X., Kang, Y., Xie, C., An, X., Dong, C., Xu, Y., y Shen, Q. (2020). Arbuscular mycorrhizal fungal communities in the rhizospheric soil of litchi and mango orchards as affected by geographic distance, soil properties and manure input. Applied Soil Ecology, 152, 103593. https://doi.org/10.1016/j.apsoil.2020.103593
Kindt, R., y Coe, R. (2005). Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre [ICRAF]. https://www.worldagroforestry.org/output/tree-diversity-analysis
Koske, R. E., y Tessier, B. (1983). A convenient permanent slide mounting medium. Mycological Society of America Newsletter, 34(2), 59.
Lekberg, Y., Koide, R. T., Rohr, J. R., Aldrich‐Wolfe, L., y Morton, J. B. (2007). Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 95(1), 95-105. https://doi.org/10.1111/j.1365-2745.2006.01193.x
Lin, T.-C., da Silva, G. A., y Oehl, F. (2019). Acaulospora tsugae, a new species in the Glomeromycetes from Taiwan, and a key to species in Acaulosporaceae. Nova Hedwigia, 108(3-4), 475-488. https://doi.org/10.1127/nova_hedwigia/2018/0513
Magurran, A. E. (1988). Ecological diversity and its measurement. Springer Dordrecht. https://doi.org/10.1007/978-94-015-7358-0
Ministerio de Agricultura y Desarrollo Rural [MADR]. (2020). Cadena del Mango. Indicadores e instrumentos Cuarto trimestre. Cifras Sectoriales. Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas [SIOC]. https://sioc.minagricultura.gov.co/Mango/Documentos/2020-12-31%20Cifras%20Sectoriales.pdf
Mohandas, S. (2012). Arbuscular mycorrhizal fungi benefit mango (Mangifera indica L.) plant growth in the field. Scientia Horticulturae, 143, 43-48. https://doi.org/10.1016/j.scienta.2012.05.030
Mullath, S. K., Błaszkowski, J., Govindan, B. N., Dhaheri, L. al, Symanczik, S., y Al-Yahya’ei, M. N. (2019). Organic farming practices in a desert habitat increased the abundance, richness, and diversity of arbuscular mycorrhizal fungi. Emirates Journal of Food and Agriculture, 31(12), 969-979. https://doi.org/10.9755/ejfa.2019.v31.i12.2057
Oehl, F., de Souza, F. A., y Sieverding, E. (2008). Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon, 106, 311-360.
Oehl, F., Sánchez-Castro, I., da Silva, D. K. A., Santos, V. M., Palenzuela, J., y da Silva, G. A. (2019). Septoglomus nigrum, a new arbuscular mycorrhizal fungus from France, Germany and Switzerland. Nova Hedwigia, 109(1-2), 121-134. https://doi.org/10.1127/nova_hedwigia/2019/0523
Oehl, F., Silva, G. A. da, Goto, B. T., y Sieverding, E. (2011). Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon, 116(1), 75-120. https://doi.org/10.5248/116.75
Oksanen, J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Peter, R., Minchin, R. Y., Gavin, L., Simpson, P., Henry, H., Szoecs, E., y Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-7. http://CRAN.R-project.org/package=vegan
Öpik, M., Moora, M., Liira, J., y Zobel, M. (2006). Composition of root‐colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology, 94(4), 778-790. https://doi.org/10.1111/j.1365-2745.2006.01136.x
Peña-Venegas, C. P., y Vasco-Palacios, A. M. (2019). Endo- and Ectomycorrhizas in Tropical Ecosystems of Colombia. En M. C. Pagano, y M. A. Lugo (eds.), Mycorrhizal Fungi in South America (pp. 111-146). Springer Cham. https://doi.org/10.1007/978-3-030-15228-4_6
Reddy, B., y Bagyaraj, D. J. (1994). Selection of efficient vesicular arbuscular mycorrhizal fungi for inoculating the mango rootstock cultivar ‘Nekkare.’ Scientia Horticulturae, 59(1), 69-73. https://doi.org/10.1016/0304-4238(94)90093-0
Sieverding, E., da Silva, G. A., Berndt, R., y Oehl, F. (2014). Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon, 129(2), 373-386. https://doi.org/10.5248/129.373
Torres-Arias, Y., Furrazola, E., Berbara, R. L. L., Jobim, K., Lima, J. L. R., y Goto, B. T. (2017). Glomus herrerae, a new sporocarpic species of Glomeromycetes from Cuba. Current Research in Environmental & Applied Mycology, 7(3), 155-160. https://doi.org/10.5943/cream/7/3/2
Vaast, P., Zasoski, R. J., y Bledsoe, C. S. (1997). Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza, 6(6), 493-497. https://doi.org/10.1007/s005720050153
van der Heijden, M. G. A., Martin, F. M., Selosse, M., y Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205(4), 1406-1423. https://doi.org/10.1111/nph.13288
Verbruggen, E., Röling, W. F. M., Gamper, H. A., Kowalchuk, G. A., Verhoef, H. A., y van der Heijden, M. G. A. (2010). Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 186(4), 968-979. https://doi.org/10.1111/j.1469-8137.2010.03230.x
Wu, Q. -S., Li, G. -H., y Zou, Y. N. (2011). Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. Journal of Animal and Plant Sciences, 21(4), 746-750. https://www.thejaps.org.pk/Volume/2011/21-4/abstract/16.php