Effect of herbicides on the population of microorganisms in the cultivation of Theobroma cacao L., in the Luz de América parish, Ecuador
Main Article Content
Abstract
Conventional agriculture is characterized by excessive use of machinery, agrochemicals, and environmentally unfriendly practices. We aimed to determine the effect of herbicides (glyphosate and paraquat) on the population of rhizosphere microorganisms in Theobroma cacao L. crops in the municipality of Luz de América, Ecuador. The research was carried out between June and November 2019 in a seven-year-old crop planted in a 4x4 m arrangement, with 6.36 % organic matter, silt loam clay loam soil, and pH of 5.93 with identical management throughout the plantation. The treatments were: T1 = systemic herbicide-glyphosate (1.5 l/ha); T2 = contact herbicide-paraquat (1.5 l/ha); and T3 = mechanical control-mower-control; each with six replicates. Three soil subsamples were taken and sent to the laboratories of the Instituto Nacional de Investigaciones Agropecuarias (INIAP). The variables measured were population growth, genus identification, and fungal population growth of sample. Statistical analyses were carried out using Tinn-R. Day 28 marked a significant difference between all observations (P-value=0.0269); the presence of microorganisms had a higher concentration when paraquat was used (1,894,001 CFU/ml). The presence of Trichoderma (higher in paraquat) and Fusarium (higher in glyphosate) was noted when evaluating the population development of the fungi. Considering the treatments and the days of observation, it was confirmed that the population of Trichoderma decreased in greater proportion when glyphosate was applied. We conclude that the two herbicides increase the development of Fusarium, although paraquat to a lesser extent, while paraquat favors the presence of Trichoderma.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Aborisade, W. T., y Atuanya, E. I. (2020). Effects of an organochlorine and pyrethroid pesticide formulation on soil’s culturable microbial population. International Journal of Technical Research & Science, 05(01), 13-24. https://doi.org/10.30780/IJTRS.V05.I01.003
Aduov, M., Nukusheva, S., Kaspakov, E., Isenov, K., Volodya, K., y Tulegenov, T. (2020). Seed drills with combined coulters in No-till technology in soil and climate zone conditions of Kazakhstan. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 70(6), 525-531. https://doi.org/10.1080/09064710.2020.1784994
Aguilar-Bustamante, V. (2013). Análisis de datos de ensayos de descomposición y mineralización de residuos de malezas en café usando canastas. La Calera, 13(21), 115-120. https://doi.org/10.5377/calera.v13i21.1681
Alarcon, J., Recharte, D., Yanqui, F., Moreno, S., y Buendía, M. (2020). Fertilizar con microorganismos eficientes autóctonos tiene efecto positivo en la fenología, biomasa y producción de tomate (Lycopersicum esculentum Mill). Scientia Agropecuaria, 11(1), 67-73. https://doi.org/10.17268/sci.agropecu.2020.01.08
Anderson, J., y Aitken, E. (2021). Effect of in planta treatment of ‘cavendish’ banana with herbicides and fungicides on the colonisation and sporulation by Fusarium oxysporum f.sp. cubense subtropical race 4. Journal of Fungi, 7(3), 184. https://doi.org/10.3390/jof7030184
Asad, S. A. (2022). Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. Ecological Complexity, 49, 100978. https://doi.org/10.1016/j.ecocom.2021.100978
Batool, R., Umer, M. J., Wang, Y., He, K., Zhang, T., Bai, S., Zhi, Y., Chen, J., y Wang, Z. (2020). Synergistic effect of Beauveria bassiana and Trichoderma asperellum to induce maize (Zea mays L.) defense against the asian corn borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and larval immune response. International Journal of Molecular Sciences, 21(21), 8215. https://doi.org/10.3390/ijms21218215
Bertola, M., Ferrarini, A., y Visioli, G. (2021). Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms, 9(7), 1400. https://doi.org/10.3390/microorganisms9071400
Caicedo Amazo, L. M. (2021). Evaluación de los principales impactos ambientales del uso del Glifosato como agente plaguicida de cultivos ilícitos en zonas rurales del país. Fundación Universidad de América. https://hdl.handle.net/20.500.11839/8740
Chóez-Guaranda, I., Espinoza-Lozano, F., Reyes-Araujo, D., Romero, C., Manzano, P., Galarza, L., y Sosa, D. (2023). Chemical characterization of Trichoderma spp. extracts with antifungal activity against cocoa pathogens. Molecules, 28(7), 3208. https://doi.org/10.3390/molecules28073208
Crous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H.-J., Chaverri, P., Gené, J., Guarro, J., Hirooka, Y., Bensch, K., Kema, G. H. J., Lamprecht, S. C., Cai, L., Rossman, A. Y., Stadler, M., Summerbell, R. C., Taylor, J. W., Ploch, S., Visagie, C. M., … y Thines, M. (2021). Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 98, 100116. https://doi.org/10.1016/j.simyco.2021.100116
Cruz Cárdenas, C. I., Zelaya Molina, L. X., Sandoval Cancino, G., de los Santos Villalobos, S., Rojas Anaya, E., Chávez Díaz, I. F., y Ramírez, S. R. (2021). Utilización de microorganismos para una agricultura sostenible en México: consideraciones y retos. Revista Mexicana de Ciencias Agrícolas, 12(5), 899-913. https://doi.org/10.29312/remexca.v12i5.2905
de Sousa, W. N., Brito, N. F., Felsemburgh, C. A., Vieira, T. A., y Lustosa, D. C. (2021). Evaluation of Trichoderma spp. isolates in cocoa seed treatment and seedling production. Plants, 10(9), 1964. https://doi.org/10.3390/plants10091964
García Vidal, G., Guzmán Vilar, L., y Pérez Campdesuñer, R. (2017). Tendencias de la investigación del cacao: oportunidades para la investigación en Santo Domingo de los Tsáchilas. SATHIRI, 12(2), 24-45. https://doi.org/10.32645/13906925.105
García-Briones, A., Pico-Pico, B., y Jaimez, R. (2021). La cadena de producción del Cacao en Ecuador: Resiliencia en los diferentes actores de la producción. Novasinergia, 4(2). 152-172. https://doi.org/10.37135/ns.01.08.10
Garcia-Muñoz, P., Dachtler, W., Altmayer, B., Schulz, R., Robert, D., Seitz, F., Rosenfeldt, R., y Keller, N. (2020). Reaction pathways, kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides: Influence of the aqueous matrix. Chemical Engineering Journal, 384, 123315. https://doi.org/10.1016/j.cej.2019.123315
González-Ortega, E., y Fuentes-Ponce, M. (2022). Dinámica del glifosato en el suelo y sus efectos en la microbiota. Revista Internacional de Contaminación Ambiental, 38(1), 127-144. https://doi.org/10.20937/rica.54197
Granda Mora, K. I., Araujo-Abad, S., Collahuazo-Reinoso, Y., López Salas, Y., Jaen Rigaud, X., Robles-Carrión, Ángel, y Urgiles-Gómez, N. (2021). Caracterización morfológica y fisiológica de microorganismos rizosféricos nativos de sistemas agroforestales de café. Bosques Latitud Cero, 10(2), 124-136. https://revistas.unl.edu.ec/index.php/bosques/article/view/832
Guamán Guamán, R. N., Desiderio Vera, T. X., Villavicencio Abril, Á. F., Ulloa Cortázar, S. M., y Romero Salguero, E. J. (2020). Evaluación del desarrollo y rendimiento del cultivo de maíz (Zea mays L.) utilizando cuatro híbridos. Siembra, 7(2), 047-056. https://doi.org/10.29166/siembra.v7i2.2196
Hidalgo, D., y Tello, C. (2022). Manual para la producción de hongos entomopatógenos y análisis de calidad de bioformulados. Manual N° 128. Instituto Nacional de Investigaciones Agropecuarias [INIAP]. http://repositorio.iniap.gob.ec/handle/41000/5950
Instituto Nacional de Estadísticas y Censos [INEC]. (2022). Encuesta de Superficie y Producción Agropecuaria Continua 2021. https://www.ecuadorencifras.gob.ec/encuesta-superficie-produccion-agropecuaria-continua-2021/
Klein, R., y McClure, G. (2022). 2022 Nebraska Crop Budgets. EC872. Institute of Agriculture and Natural Resources, University of Nebraska. https://cap.unl.edu/sites/unl.edu.ianr.agecon.center-for-ag-profitability/files/media/file/2022-nebraska-crop-budgets-010322%20%281%29.pdf
la Cecilia, D., y Maggi, F. (2020). Influential sources of uncertainty in glyphosate biochemical degradation in soil. Mathematics and Computers in Simulation, 175, 121-139. https://doi.org/10.1016/j.matcom.2020.01.003
MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H., y Dehnen-Schmutz, K. (2020). An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40(4), 24-37. https://doi.org/10.1007/s13593-020-00631-6
Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A. K., y Manna, M. C. (2020). Impact of agrochemicals on soil health. In M. N. V. Prasad (ed.), Agrochemicals Detection, Treatment and Remediation (pp. 161-187). Elsevier. https://doi.org/10.1016/B978-0-08-103017-2.00007-6
Meena, R., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., Sharma, M., Yadav, G., Jhariya, M., Jangir, C., Pathan, S., Dokulilova, T., Pecina, V., y Marfo, T. (2020). Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land, 9(2), 34. https://doi.org/10.3390/land9020034
Mesnage, R., Oestreicher, N., Poirier, F., Nicolas, V., Boursier, C., y Vélot, C. (2020). Transcriptome profiling of the fungus Aspergillus nidulans exposed to a commercial glyphosate-based herbicide under conditions of apparent herbicide tolerance. Environmental Research, 182, 109116. https://doi.org/10.1016/j.envres.2020.109116
Mite Vivar, F. A. (2016). Fertilización del cultivo de cacao Theobroma cacao L. INIAP. http://repositorio.iniap.gob.ec/handle/41000/3524
Montero Rojas, M. (2018). Consecuencias ambientales y riesgos para la salud causados por el plaguicida Paraquat en Costa Rica. Revista Pensamiento Actual, 18(30), 56-66. https://doi.org/10.15517/pa.v18i30.33812
Mookodi, K. L., Spackman, J. A., y Adjesiwor, A. T. (2023). Urea ammonium nitrate as the carrier for preplant burndown herbicides. Agrosystems, Geosciences & Environment, 6(3). https://doi.org/10.1002/agg2.20404
Morocho, M. T., y Leiva-Mora, M. (2019). Microorganismos eficientes, propiedades funcionales y aplicaciones agrícolas. Centro Agrícola, 46(2), 93-103. http://cagricola.uclv.edu.cu/index.php/es/volumen-46-2019/no-2-abr-jun-2019/1155-microorganismos-eficientes-propiedades-funcionales-y-aplicaciones-agricolas
Nikitin, D. A., Ivanova, E. A., Semenov, M. v., Zhelezova, A. D., Ksenofontova, N. A., Tkhakakhova, A. K., y Kholodov, V. A. (2023). Diversity, Ecological characteristics and identification of some problematic phytopathogenic Fusarium in soil: A review. Diversity, 15(1), 49. https://doi.org/10.3390/d15010049
Nurlaila, N., Rosmana, A., y Dewi, V. S. (2020). The capability of Trichoderma asperellum in suppressing vascular streak diseases on five different cocoa clones. IOP Conference Series: Earth and Environmental Science, 486(1), 012158. https://doi.org/10.1088/1755-1315/486/1/012158
Picholi, T., Colmán, P., Peralta Paiva, E., Melgarejo, M., Amarilla, D., y Maidana Chávez, E. (2024). Eficiencia de herbicidas de diferentes modos de acción para el control de la Conyza sumatrensis en post cosecha de maíz. Bioagro, 36(2), 155-162. https://doi.org/10.51372/bioagro362.3
Rosabal Ayan, L., Macías Coutiño, P., Maza González, M., López Vázquez, R., y Guevara Hernández, F. (2021). Microorganismos del suelo y sus usos potenciales en la agricultura frente al escenario del cambio climático. Magna Scientia UCEVA, 1(1), 104-117. https://doi.org/10.54502/msuceva.v1n1a14
Saad, M. M., Eida, A. A., y Hirt, H. (2020). Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. Journal of Experimental Botany, 71(13), 3878-3901. https://doi.org/10.1093/jxb/eraa111
Shan, C., Wang, G., Wang, H., Xie, Y., Wang, H., Wang, S., Chen, S., y Lan, Y. (2021). Effects of droplet size and spray volume parameters on droplet deposition of wheat herbicide application by using UAV. International Journal of Agricultural and Biological Engineering, 14(1), 74-81. https://doi.org/10.25165/j.ijabe.20211401.6129
Silva, J. B. T. da, Marques, E., Menezes, J. E., Silva, J. P. da, y Mello, S. C. M. de. (2020). Population density of Trichoderma fungi in natural environments and agrosystems of a Cerrado area. Biota Neotropica, 20(4). https://doi.org/10.1590/1676-0611-bn-2020-1048
Singh, N., Daramola, O. S., Iboyi, J. E., y Devkota, P. (2024). Peanut (Arachis hypogaea L.) response to low‐rate applications of selected herbicides at vegetative and reproductive growth stages. Agronomy Journal, 116(2), 478-488. https://doi.org/10.1002/agj2.21540
Sociedad Española de Microbiología (2014). Clave dicotómica para la identificación de hongos aislados sistemáticamente en ambientes mediterráneos. SEM@foro, (57), 70-71. https://www.semicrobiologia.org/revista-semaforo/junio-2014
Soria, M. (2016). ¿Por qué son importantes los microorganismos del suelo para la agricultura? Química Viva, 15(2), 3-10. http://www.quimicaviva.qb.fcen.uba.ar/v15n2/E0037.html
Stuart, A. M., Merfield, C. N., Horgan, F. G., Willis, S., Watts, M. A., Ramírez-Muñoz, F., U, J. S., Utyasheva, L., Eddleston, M., Davis, M. L., Neumeister, L., Sanou, M. R., y Williamson, S. (2023). Agriculture without paraquat is feasible without loss of productivity—lessons learned from phasing out a highly hazardous herbicide. Environmental Science and Pollution Research, 30(7), 16984-17008. https://doi.org/10.1007/s11356-022-24951-0
Suárez Escobar, A. F., Guevara Correa, D., Méndez Quintero, M. C., Mendoza Abella, J. F., y Álvarez Cabrera, J. A. (2019). Evaluación de un reactor para la degradación fotocatalítica de glifosato empleando un catalizador de TiO2-Mn. Revista Colombiana de Química, 48(3), 19-25. https://doi.org/10.15446/rev.colomb.quim.v48n3.76918
Tetteh, D. A., y Amos, I. (2024). Effect of land use on soil macrofauna in Southern Ghana. Biodiversity, 25(3), 237-242. https://doi.org/10.1080/14888386.2024.2342311
Warman, N. M., y Aitken, E. A. B. (2018). The Movement of Fusarium oxysporum f.sp. cubense (Sub-Tropical Race 4) in Susceptible Cultivars of Banana. Frontiers in Plant Science, 9, 1748. https://doi.org/10.3389/fpls.2018.01748
Waseem, R., Mwalupaso, G. E., Waseem, F., Khan, H., Panhwar, G. M., y Shi, Y. (2020). Adoption of sustainable agriculture practices in banana farm production: A study from the Sindh Region of Pakistan. International Journal of Environmental Research and Public Health, 17(10), 3714. https://doi.org/10.3390/ijerph17103714