Comparative analysis of the physicochemical properties and antioxidant capacity of a morphotype of oregano (Origanum vulgare L.) cultivated in two locations of the ecuadorian sierra
Main Article Content
Abstract
Oregano (Origanum. vulgare L.) is a species introduced into the Ecuadorian flora. This species due to its culinary properties is highly appreciated and consumed, and therefore the nature of its benefits is important to be determined. In this study, the chemical composition and the functional compounds content responsible for the antioxidant activity of the plant were evaluated in the oregano accession ECU-20229 from the Germplasm Bank of the National Institute for Agriculture Research (INIAP). This research was carried out in Italquí-province of Imbabura and Tumbaco-province of Pichincha. The whole plant and the plant parts root, stem and leaves were analyzed to determine the content of protein, fatty compounds, minerals and functional compounds. The proximal analysis, the concentration of protein, fatty compounds, minerals, polyphenols and flavonoids, as well as the antioxidant capacity were performed. Content of compounds were statistically different among plant parts as well as among sites. Concentration of protein, fatty compounds and carbohydrates were higher on leaves than the other parts of the plant. Concentration of these compounds were higher in Tumbaco than in Italquí. The micro and macro-minerals were higher in Italquí than in Tumbaco, as well as the content of the total polyphenols and flavonoids. The antioxidant capacity was higher in Tumbaco. The nutritional properties that have been described for this plant for the benefit of human and animal health have been confirmed, and in this research an adding value has been incorporated to the plant parts that are regularly not used.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Allauca, J., Tapia, C., Tacán, M., Monteros, A., & Brito Grandes, B. (2013). Estudio de la biodiversidad de plantas medicinales en las provincias de Carchi, Imbabura y Pichincha. Quito: INAP - Instituto Nacional de Investigaciones Agropecuarias, Departamento Nacional de Recursos Fitogenéticos.
Antal, D., Citu, C., Ardellan, F., Dehelean, C., Viaia, L., Soica, C., Viaia, V., Biris, M., & Saas, I. (2015). Metallome of Origanum vulgare: the unknown side of a medicinal and aromatic plant used worldwide. FARMACIA, 63(4), 534-538.
Casas Castro, A. (2019). Factores ambientales que afectan la nutrición vegetal. Obtenido de; https://www.himarcan.com/wp-content/uploads/2019/11/Factores-Ambientales-que-Afectan-a-la-Nutricion-Vegetal-Antonio-Casas.pdf
Cross, E., Villenueve, F., & Vicent, J. (1982). Recherche d'un indice de fermentation du cacao. Evolution des tanins et des phénols totaux de la feve. Cacao-Café, Thé Paris, XXVI(2), 109-114.
De la Torre, L., Navarrete, H., Muriel, P., Macía, M., & Balslev, H. (2008). Enciclopedia de las plantas útiles del Ecuador, 1.a ed. Quito, Ecuador: Aarhus.
Flores-Martínez, H., León-Campos, C., Estarrón-Espinosa, M., & Orozco-Ávila, I. (2016). Optimización del proceso de extracción de sustancias antioxidante a partir del orégano mexicano (L. graveolens HBK) utilizando la metodología de superficie de respuesta (MSR). Revista Mexicana de Ingeniería Química, 15(3), 773-785.
INIAP - Instituto Nacional de Investigaciones Agropecuarias. (2017). Laboratorio de servicio de análisis e investigación de alimentos del Instituto Nacional Autónomo de Investigaciones agropecuarias. Quito: INIAP.
Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K., & Kobori, M. (2003). Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. Journal of agricultural and food chemistry, 51(1), 68–75. https://doi.org/10.1021/jf025781x
Koksal, O., Ozer, O., & Muzaden, M. (2010). Analysis of effective factors on information sources at Turkish Oregano farms. African Journal of Agriculture Research, 5(2), 142-149. https://doi.org/10.5897/AJAR09.598
Kostić, D., Mitić, A., Zarubica, A., Mitić, M., Veličković, J., & Randjelichić, S. (2011). Content of trace metal in medicinal plants and their extracts. Hemijska Industrija,, 65(2), 165-170. https://doi.org/10.2298/HEMIND101005075K
Mercado-Mercado, G., Carrillo, L., Wall-Medrano, A., López, J., & Álvarez-Parrilla, E. (2013). Compuestos polifenólicos y capacidad antioxidante de especies típicas consumidas en México. Nutrición Hospitalaria, 28(1), 36-46. http://dx.doi.org/10.3305/nh.2013.28.1.6298
Oracz, J., & Nebesny, E. (2016). Antioxidant Properties of Cocoa Beans (Teobroma cacao L.): Influence of Cultivar and Roasting Conditions. International Journal of Food Properties, 19(6), 1242-1258. https://doi.org/10.1080/10942912.2015.1071840
Re, R., Proteggente, N., Pannala, A. Y., & Rice-Evans. (1998). Antioxidant activity applying an impoved ABTS+ radical Cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of agricultural and food chemistry, 53(20), 7749–7759. https://doi.org/10.1021/jf051513y
Vallverdú-Queralt, A., Raquiero, J., Martínez-Huelamo, M., Rinaldi, J., Leal, L., & Lamuela-Raventos, R. (2014). A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chemistry, 154(1), 299-307. https://doi.org/10.1016/j.foodchem.2013.12.106
Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of varius tea extracts in relation to their antimutagenicity. Journal Agriculture Food Chemistry, 43(1), 27-32. https://doi.org/10.1021/jf00049a007
Zagula, G., Fabisiak, A., Bajar, M., Czernicka,M., Saletnik, B., & Puchalski,C. (2016). Mineral components analysis of selected dryed hebrs. ECONTECHMOD: An International Quarterly Journal on Economics of Technology and Modelling Processes, 5(2), 127-132.
Zavala-Nigoa, J., Loarca-Piña, G., & García-García, T. (2010). Evaluación del contenido fenólico, capacidad antioxidante y actividad citotóxica sobre células caco-2 del extracto acuoso de orégano (Lippia graveolens KUNT). 2.º Congreso Nacional de Química Médica. Querétaro.
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radical. Food Chemisry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2