Nutritional quality index in soils cultivated with cocoa in the Colombian Nariño mountain subregion
Main Article Content
Abstract
Soil quality is used to determine whether a production system is sustainable. The objective of this study is to estimate a soil nutrient quality index [NQI] for cocoa by standardizing variables, developing scoring functions, and assigning relative weights. Macronutrients and micronutrients, acidity (pH), organic matter content [%OM] and aluminum saturation [%Al.S] were standardized. The NQI were analyzed according to the soil cartographic units [SCU] and sampling site locations. Computer-assisted machine learning algorithms were used for the calibration of a spatial prediction model of the NQIs. It was found that 70.6 % of the sites were classified with a medium (value of) NQI (0.4-0.7), 23.8 % were low, and 5.6 % were high. The SCU with the highest NQI also had the best water retention, limited effective depth and were located on steep slopes; those with the lower NQI were affected by deficiencies in OM and macronutrient content, but those sites were found in more accessible areas. The spatial distribution map of the NQI was obtained, providing a detailed visual representation of the areas with higher and lower nutritional suitability for cocoa cultivation. The NQI allows to understand the nutritional supply of the soil in the Cordillera subregion of Nariño, but integrating additional factors such as soil depth, relief, and water availability would improve the monitoring and enable a more effective management of cocoa crops in line with environmental sustainability principles.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Siembra know and accept the following conditions:
- Authors retain the copyright and grant Siembra the right of first publication of the work, under the Creative Commons Attribution License. Third parties are allowed to use what has been published as long as they refer to the author or authors of the work and its publication in this journal.
This content is licensed under a Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).
- Authors maintain the copyright and guarantee Siembra the right to publish the manuscript through the channels it considers appropriate.
- Authors may establish on their own additional agreements for the non-exclusive distribution of the version of the work published in Siembra, acknowledging their initial publication in the same, such as in institutional repositories.
- Authors are authorized to disseminate their work electronically once the manuscript is accepted for publication.
References
Amponsah-Doku, B., Daymond, A., Robinson, S., Atuah, L., y Sizmur, T. (2022). Improving soil health and closing the yield gap of cocoa production in Ghana – A review. Scientific African, 15, e01075. https://doi.org/10.1016/j.sciaf.2021.e01075 DOI: https://doi.org/10.1016/j.sciaf.2021.e01075
Andrews, S. S., Karlen, D. L., y Cambardella, C. A. (2004). The soil management assessment framework. Soil Science Society of America Journal, 68(6), 1945-1962. https://doi.org/10.2136/sssaj2004.1945 DOI: https://doi.org/10.2136/sssaj2004.1945
Araujo, Q., Ahnert, D., Loureiro, G., Faria, J., Fernandes, C., y Baligar, V. (2018). Soil quality index for cacao cropping systems. Archives of Agronomy and Soil Science, 64(13), 1892-1909. https://doi.org/10.1080/03650340.2018.1467005 DOI: https://doi.org/10.1080/03650340.2018.1467005
Arshad, M. A., y Coen, G. M. (1992). Characterization of soil quality: Physical and chemical criteria. American Journal of Alternative Agriculture, 7(1/2), 25-31. https://www.jstor.org/stable/44479646 DOI: https://doi.org/10.1017/S0889189300004410
Bautista-Cruz, A., de León-González, F., Carrillo-González, R., y Robles, C. (2011). Identification of soil quality indicators for maguey Mezcalero (Agave angustifolia Haw.) plantations in southern Mexico. African Journal of Agricultural Research, 6(20), 4795-4799. https://doi.org/10.5897/AJAR11.203
Baveye, P. C., Baveye, J., y Gowdy, J. (2016). Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science, 4. https://doi.org/10.3389/fenvs.2016.00041 DOI: https://doi.org/10.3389/fenvs.2016.00041
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., y Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030 DOI: https://doi.org/10.1016/j.soilbio.2018.01.030
Castillo-Valdez, X., Etchevers-Barra, J. D., Hidalgo-Moreno, C. M. I., y Aguirre-Gómez, A. (2021). Evaluación de la calidad de suelo: Generación e interpretación de indicadores. Terra Latinoamericana, 39, e698. https://doi.org/10.28940/terra.v39i0.698 DOI: https://doi.org/10.28940/terra.v39i0.698
Castro Méndez, C. E., Guzmán Lugo, D. M., y Cortés Delgadillo, D. L. (2021). El almacenamiento y la disponibilidad de agua en la determinación del uso potencial de las tierras. Revista GEOESPACIAL, 18(1), 36-48. https://doi.org/10.24133/geoespacial.v18i1.1996
Chelsa Climate. (2023). Climatologies at high resolution for the earth’s land surface areas. https://chelsa-climate.org/
Cherubin, M. R., Chavarro-Bermeo, J. P., y Silva-Olaya, A. M. (2019). Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agroforestry Systems, 93(5), 1741-1753. https://doi.org/10.1007/s10457-018-0282-y DOI: https://doi.org/10.1007/s10457-018-0282-y
Chinea-Horta, A., y Rodríguez-Izquierdo, L. (2021). Comportamiento geoespacial de algunas propiedades del suelo en el cultivo de la caña de azúcar. Revista Ingeniería Agrícola, 11(1), e01. https://www.redalyc.org/journal/5862/586269368001/html/
Cortés Lombana, A. (2014). Reflexiones para edafólogos reconocedores en la etapa de los levantamientos semidetallados.
Departamento Nacional de Planeación [DNP]. (2022). Colombia, potencia mundial de la vida. Bases del Plan Nacional de Desarrollo 2022-2026. DNP. https://colaboracion.dnp.gov.co/CDT/portalDNP/PND-2023/2023-02-06-Bases-PND-2023.pdf
Dogbatse, J. A., Arthur, A., Asare, E. K., Quaye, A. K., Konlan, S., Yeboah, S., y Addo, D. (2020). Physicochemical and biological properties of different Cocoa Pod Husk-based composts. West African Journal of Applied Ecology, 28(1), 46-60. https://journals.ug.edu.gh/index.php/wajae/article/view/381 DOI: https://doi.org/10.9734/ijpss/2019/v31i230203
Doran, J. W., y Parkin, T. B. (1994). Defining and assessing soil quality. En W. Doran, D. C. Coleman, D. F. Bezdicek, y B. A. Stewart (eds.), Defining Soil Quality for a Sustainable Environment, Volume 35 (pp. 1-21). SSSA Special Publication. https://doi.org/10.2136/sssaspecpub35.c1 DOI: https://doi.org/10.2136/sssaspecpub35.c1
Fernández, M. T. (2007). Fósforo: amigo o enemigo. ICIDCA. Sobre los derivados de la caña de azúcar, 41(2), 51-57. http://www.redalyc.org/articulo.oa?id=223114970009
Figueroa Jáuregui, M. de L., Martínez Menez, M. R., Ortíz Solorio, C. A., y Fernández Reynoso, D. S. (2018). Influencia de los factores formadores en las propiedades de los suelos en la Mixteca, Oaxaca, México. Terra Latinoamericana, 36(3), 287-299. https://doi.org/10.28940/terra.v36i3.259 DOI: https://doi.org/10.28940/terra.v36i3.259
Food and Agriculture Organization [FAO]. (2022). Country guidelines and technical specifications for global soil nutrient and nutrient budget maps – GSNmap: Phase 1. FAO. https://doi.org/10.4060/cc1717en DOI: https://doi.org/10.4060/cc1717en
Google for Developers. (2023). Google Earth Engine. https://code.earthengine.google.com/
Grunwald, S., Thompson, J. A., y Boettinger, J. L. (2011). Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Science Society of America Journal, 75(4), 1201-1213. https://doi.org/10.2136/sssaj2011.0025 DOI: https://doi.org/10.2136/sssaj2011.0025
Hartemink, A. E. (2005). Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A Review. Advanced in Agronomy, 86(1), 227-253. https://doi.org/10.1016/S0065-2113(05)86005-5 DOI: https://doi.org/10.1016/S0065-2113(05)86005-5
Instituto de Hidrología, Meteorología y Estudios Ambientales [IDEAM]. (2021). Mapa de coberturas de la tierra. Metodología Corine Land Cover adaptada para Colombia, Escala 1:100.000, periodo 2018. Index of /Cneideam/Capasgeo. http://bart.ideam.gov.co/cneideam/Capasgeo/
Instituto Geográfico Agustín Codazzi [IGAC]. (2004). Estudio general de suelos y zonificación de tierras del departamento de Nariño. IGAC.
ISRIC — World Soil Information. (2024). SoilGrids and WoSIS. Soilgrids Information. https://soilgrids.org/
Jaimes Suárez, Y. Y., Agudelo Castañeda, G. A., Báez Daza, E. Y., Rengifo Estrada, G. A., y Rojas Molina, J. (2021). Modelo productivo para el cultivo de cacao (Theobroma cacao L.) en el departamento de Santander. AGROSAVIA. https://doi.org/10.21930/agrosavia.model.7404647 DOI: https://doi.org/10.21930/agrosavia.model.7404647
Jaramillo, D. (2002). Introducción a la ciencia del suelo. Universidad Nacional de Colombia. https://bibliotecadigital.ciren.cl/handle/20.500.13082/147701
Julca-Otiniano, A., Meneses-Florián, L., Blas-Sevillano, R., y Bello-Amez, S. (2006). La materia orgánica, importancia y experiencias de su uso en la agricultura. IDESIA, 24(1), 49-61. http://dx.doi.org/10.4067/S0718-34292006000100009 DOI: https://doi.org/10.4067/S0718-34292006000100009
Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1-26. https://doi.org/10.18637/JSS.V028.I05 DOI: https://doi.org/10.18637/jss.v028.i05
Kuzyakov, Y., Gunina, A., Zamanian, K., Tian, J., Luo, Y., Xu, X., Yudina, A., Aponte, H., Alharbi, H., Ovsepyan, L., Kurganova, I., Ge, T., y Guillaume, T. (2020). New approaches for evaluation of soil health, sensitivity and resistance to degradation. Frontiers of Agricultural Science and Engineering, 7(3), 282-288. https://doi.org/10.15302/J-FASE-2020338 DOI: https://doi.org/10.15302/J-FASE-2020338
León-Moreno, C. E., Rojas-Molina, J., y Castilla-Campos, C. E. (2019). Physicochemical characteristics of cacao (Theobroma cacao L.) soils in Colombia: Are they adequate to improve productivity? Agronomía Colombiana, 37(1), 28-38. https://doi.org/10.15446/agron.colomb.v37n1.70545 DOI: https://doi.org/10.15446/agron.colomb.v37n1.70545
Meinshausen, N. (2006). Quantile Regression Forests. Journal of Machine Learning Research, 7, 983-999. https://jmlr.org/papers/v7/meinshausen06a.html
Mengel, K., Kirkby, E. A., Kosegarten, H., y Appel, T. (rds.). (2001). Principles of Plant Nutrition. Springer Netherlands. https://doi.org/10.1007/978-94-010-1009-2 DOI: https://doi.org/10.1007/978-94-010-1009-2
Ministerio de Agricultura y Desarrollo Rural [MADR]. (2020). Estrategia de ordenamiento de la producción: Cadena productiva del cacao y su industria. Viceministerio de Asuntos Agropecuarios, Dirección de Cadenas Agrícolas y Forestales. https://sioc.minagricultura.gov.co/DocumentosContexto/S4128-Plan OP Cacao 2020.pdf
Näsi, R., Mikkola, H., Honkavaara, E., Koivumäki, N., Oliveira, R. A., Peltonen-Sainio, P., Keijälä, N. S., Änäkkälä, M., Arkkola, L., y Alakukku, L. (2023). Can basic soil quality indicators and topography explain the spatial variability in agricultural fields observed from drone orthomosaics? Agronomy, 13(3), 669. https://doi.org/10.3390/agronomy13030669 DOI: https://doi.org/10.3390/agronomy13030669
Norma Técnica Colombiana NTC-ISO/IEC 17025:2006. Requisitos generales para la competencia de los laboratorios de ensayo y calibración. http://www.saludcapital.gov.co/CTDLab/Publicaciones/2015/Norma tecnica colombiana 17025.pdf
Obando Moncayo, F. H. (2016). Herramientas conceptuales y tecnológicas para la evaluación de calidad inherente del suelo y la implementación de paisajes productivos multifuncionales en el trópico. Suelos Ecuatoriales, 46(1 y 2), 31-41. http://unicauca.edu.co/revistas/index.php/suelos_ecuatoriales/article/view/63
Papić, M. (2016). A combined multi-criteria approach of soil quality analysis. Romanian Journal of Physics, 61(9-10), 1577-1590. https://rjp.nipne.ro/2016_61_9-10/RomJPhys.61.p1577.pdf
Rojas-Molina, J., Ortiz-Cabralez, L., Escobar-Pachajoa, L. D., Rojas-Buitrago, M., y Jaimes-Suárez, Y. Y. (2021). Descomposición y liberación de nutrientes en biomasa por poda de cacao (Theobroma cacao L.) en Rionegro, Santander, Colombia. Agronomía Mesoamericana, 32(3), 888-900. https://doi.org/10.15517/AM.V32I3.41608 DOI: https://doi.org/10.15517/am.v32i3.41608
Şeker, C., Özaytekin, H. H., Negiş, H., Gümüş, I., Dedeoğlu, M., Atmaca, E., y Karaca, Ü. (2017). Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia. Environmental Monitoring and Assessment, 189(4), 135. https://doi.org/10.1007/s10661-017-5848-z DOI: https://doi.org/10.1007/s10661-017-5848-z
Seybold, C. A., Herrick, J. E., y Brejda, J. J. (1999). Soil resilience: A fundamental component of soil quality. Soil Science, 164(4), 224-234. https://journals.lww.com/soilsci/abstract/1999/04000/soil_resilience__a_fundamental_component_of_soil.2.aspx DOI: https://doi.org/10.1097/00010694-199904000-00002
Seybold, C. A., Mausbach, M. J., Karlen, D. L., y Rogers, H. H. (2018). Quantification of soil quality. En R. Lal, J. M. Kimble, R. F. Follett, y B. A. Stewart (eds.), Soil Processes and the Carbon Cycle (pp. 387-404). CRC Press. https://doi.org/10.1201/9780203739273 DOI: https://doi.org/10.1201/9780203739273-27
Snoeck, D., Koko, L., Joffre, J., Bastide, P., y Jagoret, P. (2016). Cacao nutrition and fertilization. En: E. Lichtfouse (ed.), Sustainable Agriculture Reviews (vol 19) (pp. 155-202). Springer. https://doi.org/10.1007/978-3-319-26777-7_4 DOI: https://doi.org/10.1007/978-3-319-26777-7_4
Soil Survey Staff. 2014. Claves para la Taxonomía de Suelos (12ª ed.). USDA-Natural Resources Conservation Service. https://www.nrcs.usda.gov/sites/default/files/2022-10/Spanish-Keys-to-Soil-Taxonomy.pdf
Trinidad, F. W., Sol-Sánchez, Á., y Galindo-Alcántara, A. (2016). Evaluación de la rentabilidad económica y captura de carbono en plantaciones de cacao en el plan Chontalpa, Tabasco. Revista Iberoamericana de Bioeconomía y cambio climático, 2(1), 53-71. https://doi.org/10.5377/ribcc.v2i1.5680 DOI: https://doi.org/10.5377/ribcc.v2i1.5680
Unidad de Planificación Rural Agropecuaria [UPRA]. (2022). Sistema de Información para la Planificación Rural Agropecuaria, SIPRA. https://sipra.upra.gov.co/nacional
Vargas Díaz, R. E., Galindo Pacheco, J. R., Giraldo Henao, R., Varón Ramírez, V. M., Wilches Ortiz, W. A., y Franco Flórez, C. V. (2023). Metodologías de interpolación y predicción espacial para el análisis de las propiedades físicas del suelo en la hoya del río Suárez (Colombia). Siembra, 10(1), e4118. https://doi.org/10.29166/siembra.v10i1.4118 DOI: https://doi.org/10.29166/siembra.v10i1.4118
Varón-Ramírez, V. M., Araujo-Carrillo, G. A., y Guevara Santamaría, M. A. (2022). Colombian soil texture: building a spatial ensemble model. Earth System Science Data, 14(10), 4719-4741. https://doi.org/10.5194/essd-14-4719-2022 DOI: https://doi.org/10.5194/essd-14-4719-2022
Villareal-Núñez, J., Pla-Sentis, I., Agudo-Martínez, L., Villalaz-Pérez, J., Rosales, F., y Pocasangre, L. (2013). Índice de calidad de suelo en áreas cultivadas con Banano en Panamá. Agronomía Mesoamericana, 24(2), 301-315. https://doi.org/10.15517/am.v24i2.12530 DOI: https://doi.org/10.15517/am.v24i2.12530
Yamazaki, D. (2023). MERIT DEM: Multi-Error-Removed Improved-Terrain DEM. http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
Zinck, J. A. (2012). Geopedología. Elementos de geomorfología para estudios de suelos y de riesgos naturales. Faculty of Geo-Information Science and Earth Observation. https://museosuelos.ciga.unam.mx/Para_leer/Geopedologia.pdf